М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ОдиннидО
ОдиннидО
15.12.2021 12:20 •  Геометрия

Дано: ABCDA1B1C1D1 - куб

найти: угол между прямыми AC и B1C1
подробно и без лишнего текста
заранее


Дано: ABCDA1B1C1D1 - кубнайти: угол между прямыми AC и B1C1подробно и без лишнего текстазаранее

👇
Ответ:
viktoriya2000ok
viktoriya2000ok
15.12.2021
Для нахождения угла между прямыми AC и B1C1 в кубе ABCDA1B1C1D1, мы можем использовать собственность куба, согласно которой все ребра куба взаимно перпендикулярны друг другу.

Давайте рассмотрим ребра AC и B1C1.

Первым шагом найдем векторы направлений этих ребер. Для этого вычислим координаты конечной точки ребра минус координаты начальной точки ребра.

Вектор направления ребра AC:
D - A = (A1 - A, A2 - A1, A3 - A2)

Вектор направления ребра B1C1:
C1 - B1 = (B1 - C1, B2 - B1, C1 - C)

Затем найдем скалярное произведение этих векторов. Формула скалярного произведения:
AB * BC = |A|*|B|*cos(θ)

где θ - угол между прямыми AC и B1C1.

Скалярное произведение векторов AC и B1C1:
(D - A) * (C1 - B1) = (A1 - A)(B1 - C1) + (A2 - A1)(B2 - B1) + (A3 - A2)(C1 - C)

Расставим все значения:
(D - A) * (C1 - B1) = ((1 - A)(1 - C1) + (1 - A)(2 - B1) + (1 - B1)(C1 - C)

Выполним все вычисления и найдем результирующее значение. Полученное значение будет равно произведению модуля вектора AC и модуля вектора B1C1, умноженному на косинус угла между ними.

Наконец, найдем угол θ, используя формулу:
θ = arccos((D - A) * (C1 - B1) / (|D - A| * |C1 - B1|))

Итак, угол между прямыми AC и B1C1 равен θ, который мы получили в результате вычисления arccos((D - A) * (C1 - B1) / (|D - A| * |C1 - B1|)).
4,6(39 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ