тр. BCD равнобедренный, значит углы при основании равны, (180-90)/2= 45
Значит <B=90+45=135
<BDA=90-45=45
Значит <BAD=90-45=45
Итого:
<A=45
<B=135
<C=90
<D=45
синусы и т.д., вычисляй.
Для б)
ABCD - параллелограмм, т.к. BC равна и параллельна AD.
Обрати внимание, что в прямоугольном тр.ке BOC, одна сторона (катет OC), в два раза меньше гипотенузы BC. Это значит, что этот катет лежит напротив угла 30. Т.е., <OBC=30
<ODA =<OBC (как внутренние накрест лежащие) =30
Значит, в прямоугольном тр.ке AOD, OD (лежит напротив угла 30) равна тоже 1 (в два раза меньше гипотенузы AD).
Теперь видно, что тр. ABO равен тр. OBC (по двум сторонам и углу между ними (90)).
Острый угол 60°, => меньшая диагональ ромба =36. из тупого угла в 120° опущена высота на сторону ромба. рассмотрим прямоугольный треугольник, образованный меньшей диагональю ромба 36 -гипотенуза, высотой к стороне -катет и отрезком стороны - катет против угла 30°, он равен 36:2=18. следовательно другой отрезок так же равен 18 см
или другое рассуждение: меньшая диагональ разделила ромб на на 2 равных равносторонних треугольника. высота опущенная из тупого угла -это высота правильного треугольника, которая является биссектрисов и медианой, => 36:2=18 ответ: отрезки по 18
ответ: в)
тр. BCD равнобедренный, значит углы при основании равны, (180-90)/2= 45
Значит <B=90+45=135
<BDA=90-45=45
Значит <BAD=90-45=45
Итого:
<A=45
<B=135
<C=90
<D=45
синусы и т.д., вычисляй.
Для б)
ABCD - параллелограмм, т.к. BC равна и параллельна AD.
Обрати внимание, что в прямоугольном тр.ке BOC, одна сторона (катет OC), в два раза меньше гипотенузы BC. Это значит, что этот катет лежит напротив угла 30. Т.е., <OBC=30
<ODA =<OBC (как внутренние накрест лежащие) =30
Значит, в прямоугольном тр.ке AOD, OD (лежит напротив угла 30) равна тоже 1 (в два раза меньше гипотенузы AD).
Теперь видно, что тр. ABO равен тр. OBC (по двум сторонам и углу между ними (90)).
Значит < B = 30*2=60
Итак:
<B=<D=60
<A=<C=(360-60-60):2=120
Объяснение: