Отрезки пересечения этой проведенной плокости с боковыми гранями пирамиды - это средние линии треугольников, образующих боковые ребра пирамиды. Значит эти отрезки параллельны ребрам основания пирамиды. По теореме о том, что если две пересекающиеся прямые одной плоскости параллельны двум перескающимся прямым другой плоскости, то такие плосоксти параллельных, получаем требуемое утверждение. Полученный в сечении треугольник подобен треугольнику, лежащему в основании пирамиды с коэффициентом подобия 1/2. Т.е. его площадь в 4 раза меньше площади основания, т.е. равна 16.
Тупым углом будет являться угол при вершине меньшего основания. Проводим ещё одну высоту. Она будет равна первой высоте, параллельна ей и отсекать вместе с ней на большем основании три отрезка, два из которых равны по 6 см (исходя из равенства треугольников, которые равны по катета и гипотенузе), а третий отрезок - центральный, будет равен меньшему основанию, т.к. является противоположной стороной прямоугольника. Далее находим длину большего основания. Оно равно 6см+15см= 21см. Меньшее основание равно 21см-6см-6см = 9 см.