1.<А=40°
2. 18 см
Объяснение:
1. АВ=CD и BC=AD по условию, сторона BD общая доя двух треуголиников.
Соответственно по третьему признаку равенства треуголиников треугольники ABD и CBD равны
Исходя из этого имеем угол С равен углу А и равен 40°
2. Медиана делит сторону пополам. Исходя из этого получаем: АК=ВК=2 см, ВМ=СМ=3 см и АN=CN=4 см
АВ= АК+ВК=2АК=2*2=4 см
ВС= ВМ+СМ=2ВМ=2*3=6 см
АС= AN+CN=2CN=2*4=8 см
Периметр треугольника АВС=АВ+ВС+АС=4+6+8=18 см
3. Треугольник АВС равнобедренный, значит АВ=ВС. BM=BN по условию задачи. Соответственно получаем, что АМ=СN.
BD Медиана, значит получаем что АD=CD.
Так как треугольник АВС равнобедренный, соответственно угол А равен углу С.
По первому признаку равенства треугольников получаем, что треугольник MAD равен треугольнику NCD.
Из этого получаем, что MD=ND
Основание равнобедренного треугольника перпендикулярно его высоте (она же и биссектриса угла при вершине).
Находим уравнения биссектрис угла при вершине О:
1) (3х+у)/√10 = (-х+3у)/√10
3х+у = -х+3у
4х = 2у
у = 2х не подходит (проходит выше сторон треугольника).
2) (3х+у)/√10 = -(-х+3у)/√10
3х+у = -(-х+3у)
2х = -4у
у = (-1/2)х.
Уравнение перпендикулярной прямой у = 1/(-к)+в
В нашем случае уравнение основания (назовём его АВ) будет таким:
у = 1(1/2)х+в = 2х+в.
Подставим координаты известной точки на основании (5;0):
0 = 2*5+в отсюда в = -10.
Уравнение АВ: у = 2х-10 или 2х-у-10 = 0.
Координаты вершин А и В находим как как точки пересечения боковых сторон с основанием.
Сложив уравнения, получаем 5х-10 = 0, отсюда х = 10/5 = 2.
у = -3х = -3*2 = -6. Это точка А(2; -6).
Умножим первое уравнение на 2 и сложим:
5у = 10, у = 10/5 = 2, х = 3у = 3*2 = 6.
Это точка В(6; 2).
ответ: вершины треугольника О(0;0), А(2;-6), В(6;2).