1) Радиус вписанной в прямоугольный треугольник окружности находят по формуле r=(а+в-с):2, где а и в - катеты, с - гипотенуза треугольника. По условию задачи радиус вписанного круга равен (а-в):2. Вставим это значение радиуса в формулу:(а-в):2=(а+в-с):2 Домножим обе части уравнения на 2 а-в=а+в-с 2в=с в=с:2 Катет в вдвое меньше гипотенузы. Следовательно, он противолежит углу 30ᵒ -------------------------- 2) Радиус вписанной в равносторонний треугольник окружности равен одной трети высоты этого треугольника, а диаметр -двум третям. Высоту правильного треугольника находят по формуле h=(a√3):2, где а - сторона треугольника. h=(18√3):2 КН ( диаметр окружности) = две трети высоты ВН = 2(18√3):2):3=6√3 Окружность оказалось вписанной в трапецию AMNB, высота которой равна диаметру окружности, т.е. 6√3 Опустив из вершины угла М высоту МН1 к основанию АВ, получим прямоугольный треугольник АМН1 с противолежащим высоте углом А= 60ᵒ. АМ отсюда равна К1Н1:sin60ᵒ =12 см АН₁ =АК₁*sin30ᵒ=6 см СН₂=АН₁=6см Н₁Н₂=МN =6 см Р трапеции AMNB=12*2+18+6=48 см
1. Линия пересечения плоскости сечения и грани АА1В1В - прямая ВА1. Точки А1 и F1 принадлежат и плоскости сечения и грани FF1A1A, значит прямая А1F1 - линия пересечения плоскости сечения и грани FF1A1A. Линия пересечения плоскости сечения и плоскости основания ABCDEF пройдет по прямой ВЕ, так как две параллельные плоскости (оснований призмы) пересекаются третьей плоскостью (сечения) по параллельным прямым, а в правильной шестиугольной призме стороны АF и А1F1 параллельны диагонали ВЕ основания. Линия пересечения плоскости сечения и грани EE1F1F - это прямая EF1. Итак, получено искомое сечение ВА1F1Е. 2. В правильном шестиугольнике внутренние углы равны 120°. Тогда <ABO=60°, а <BAO=30°. Против угла 30° лежит катет ВО, равный половине гипотенузы АВ. То есть ВО=1. тогда АО=√3. В прямоугольном треугольнике АОА1 катет АА1=2, катет АО=√3. По Пифагору гипотенуза ОА1=√(4+3)=√7. Заметим, что искомое расстояние от точки В до прямой А1F1 - это перпендикуляр ВН, опущенный из точки В на прямую A1F1. Значит ВН=ОА1=√7, так как ОА1 тоже перпендикуляр к А1F1( угол ОАF=<BAF-<BAO или <OAF=120°-30°=90°, то есть ОА перпендикуляр к AF, и А1А - перпендикуляр к АF, а АF параллельна А1F1 и по теореме о трех перпендикулярах ОА1 - перпендикуляр к A1F1). Итак, ВН=√7. ответ: расстояние от точки В до прямой А1F1 равно √7.
Радиус вписанной в прямоугольный треугольник окружности находят по формуле
r=(а+в-с):2,
где а и в - катеты, с - гипотенуза треугольника.
По условию задачи радиус вписанного круга равен (а-в):2.
Вставим это значение радиуса в формулу:(а-в):2=(а+в-с):2
Домножим обе части уравнения на 2
а-в=а+в-с
2в=с
в=с:2
Катет в вдвое меньше гипотенузы. Следовательно, он противолежит углу 30ᵒ
--------------------------
2)
Радиус вписанной в равносторонний треугольник окружности равен одной трети высоты этого треугольника, а диаметр -двум третям.
Высоту правильного треугольника находят по формуле
h=(a√3):2, где а - сторона треугольника.
h=(18√3):2
КН ( диаметр окружности) = две трети высоты ВН = 2(18√3):2):3=6√3
Окружность оказалось вписанной в трапецию AMNB, высота которой равна диаметру окружности, т.е. 6√3
Опустив из вершины угла М высоту МН1 к основанию АВ, получим прямоугольный треугольник АМН1 с противолежащим высоте углом А= 60ᵒ.
АМ отсюда равна К1Н1:sin60ᵒ =12 см
АН₁ =АК₁*sin30ᵒ=6 см
СН₂=АН₁=6см
Н₁Н₂=МN =6 см
Р трапеции AMNB=12*2+18+6=48 см