Рассмотрим треугольник ADC-прямоугольный (угол D - прямой). У него AC=8 см. - это гипотенуза и угол CAD=30 градусов. Катет CD лежит против угла в 30 грудусов, а значит равен половине гипотенузы. Получаем CD=4 см. В этом же треугольнике находим AD по теореме Пифагора. AD=корень(AC*AC-CD*CD)=корень(64-16)=корень(48) S=a*b или в нашем случае S=AD*CD=корень(48)*4=4*корень(16*3)=16*корень(3)
АВ = Рabcd : 4 = 12 : 4 = 3 см ВВ₁ и DD₁ - медианы, значит AD₁ = D₁B = AB₁ = B₁D = 3/2 см
ΔABD равнобедренный, поэтому ∠ABD = ∠ADB, BD₁ = DB₁, BD - общая сторона для ΔDD₁B и ΔBB₁D, значит эти треугольники равны по двум сторонам и углу между ними, ⇒ BB₁ = DD₁.
Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины. Обозначим OD₁ = OB₁ = x, тогда OD = OB = 2x. ΔOBD равнобедренный, значит ∠OBD = ∠ODB = 40°. ∠D₁OB = ∠OBD + ∠ODB = 80° как внешний угол ΔDOB.
Если необходимо числовое значение, а не выражение, можно взять значение cos 80° по таблице, тогда получится: cos 80° ≈ 0,1736 BB₁ = 9 / (2√(5 - 4cos80°)) ≈ 2,2
Свойство пересекающихся хорд: Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны. Пусть это будут хорды АВ и СМ, Е -точка их пересечения. АЕ=ВЕ, СЕ=3, МЕ=12 Сделаем рисунок. Соединим А и М, С и В. Рассмотрим получившиеся треугольники АЕМ и ВЕС Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒ Треугольники АЕМ и ВЕС подобны Из подобия следует отношение: АЕ:СЕ=МЕ:ВЕ АЕ*ВЕ=СЕ*МЕ Так как АЕ=ВЕ, то АЕ²=3*12=36 АЕ=√36=6, АВ=2 АЕ=12 см
Рассмотрим треугольник ADC-прямоугольный (угол D - прямой). У него AC=8 см. - это гипотенуза и угол CAD=30 градусов. Катет CD лежит против угла в 30 грудусов, а значит равен половине гипотенузы. Получаем CD=4 см. В этом же треугольнике находим AD по теореме Пифагора. AD=корень(AC*AC-CD*CD)=корень(64-16)=корень(48)
S=a*b или в нашем случае S=AD*CD=корень(48)*4=4*корень(16*3)=16*корень(3)
ответ: 16*корень(3)