ответ: а) 150* и 30*; б) 55* и 125*
Объяснение:
В нашем случае образуется 8 углов из которых одна половина равны между собой и вторая половина также равны между собой.
Так ∠1=∠4=∠5=∠8, как накрест лежащие и равны 150*.
А ∠2=∠3=∠6=∠7.
Сумма углов 1 и 2 равен 180*, т.е. получается развернутый угол, а углы смежные. Отсюда найдем ∠2=180*-150*=30*.
б) один из углов на 70* больше другого. обозначим один из углов через х, тогда другой, смежный ему, равен х+70. В сумме они дают 180*.Составим уравнение и найдем х:
х+х+70=180*;
2х+70=180*;
2х=180-70;
2х=110;
х=55* - один из углов (меньший).
55*+70*=125* - больший угол.
Итак, одна половина углов равна 55*, а другая - 125* (смотри предыдущее задание).
Как-то так... :)) Удачи!
через 2 прямые МР и НО модно провести плоскость, препендикулярную заданной. В этой плоскости МНРО - трапеция, с основаниями НО = 12, МР = 24, и боковой стороной, перпендикулярной основаниям (это в условии задано, что МР и НО препендикулярны плоскости, а РО как раз лежит в этой плоскости, потому что точки Р и О лежат в ней :. Эта боковая сторона РО = 5. Надо найти вторую, так сказать, наклонную боковую сторону трапеции. Как это делается, ясно из следующего соотношения
МН^2 = (МР - НО)^2 + РО^2;
МН^2 = (24 - 12)^2 + 5^2;
МН =13
47 ответ вот тебе не благодари