ответ: 54°; 126°; 54°; 126°
В условии не было сказано о рисунке, я не вводил переменных, поэтому претензий к решению не принимаю.
Объяснение: диагонали ромба разбивают его на четыре равных прямоугольных треугольника, т.к. диагонали ромба взаимно перпендикулярны, поэтому, если коэффициент пропорциональности равен х, то 3х+7х+90=180, т.к. сумма углов треугольника равна 180°⇒10х=90; х=9, значит, углы ромба будут соответственно равны 2*3х=6*9°=54° и 2*7х=14°*9=126°; я удвоил углы треугольника, т.к. диагонали являются биссектрисами внутренних углов ромба. а т.к. противоположные углы ромба равны, то искомые углы ромба равны 54°; 126°; 54°; 126°
В прямоугольном треугольнике АВС найти катет АС и высоту CD , если проекции катетов на гипотенузу АВ равны AD=25см, BD=4см.
Объяснение:
Если в прямоугольном треугольнике опущена высота на гипотенузу, то каждый из катетов есть среднее пропорциональное между всей гипотенузой и его проекцией на гипотенузу: АС=√(АВ*АD),
AC=√( (25+4)*25)=5√29 (см)
Если в прямоугольном треугольнике опущена высота на гипотенузу, то высота является средним пропорциональным между проекциями катетов на гипотенузу : CD=√AD*BD ,CD=√(25*4)=10 (см).
ответ: 1) О(0;0) - (начало координат); R=13 ед.
2) О(5;-20); R=12 ед.
Объяснение:
Стандартное уравнение окружности имеет вид:
(х-х1)² + (y-y1)²=r²; Здесь х1 и у1 - координаты центра окружности.
1) x²+y²=169;
В данной формуле х1=0 и у1=0 - координаты центра окружности. r=√169=13 ед.
***
(x+5)²+(y−20)²=144;
В данной формуле х1=5, у1= - 20 - координаты центра окружности;
Радиус равен R=√144=12 ед.