1)т.к. окружность вписана в четырёхугольник, то суммы противоположных сторон равны, т.е. ав+cd=bc+ad=6+24=30 (см)
т.к. ав=cd, то ав=cd =30: 2=15 (см).
2) из δ авв1-прям.: ав=15, ав1=(ad-bc)/2=(24-6): 2=9(cм), тогда
вв1= √(ав²-ав1²)=√15²-9²=√144=12(см).
3) sтрап.= ½· (ad+bc)·bb1=½·30·12=180 (см²)
4) радиус ,вписанной в трапецию ,окружности равен половине её высоты ,
т.е. r=½·bb1=6(см).
ответ: 6 см; 180 см².
Медианы в треугольнике делят друг друга в отношении 2 : 1, считая от вершины, то есть BO : OD = 2 : 1
Так как прямые EF и AC параллельны, то ∠BAC = ∠BEF как соответственные углы.
Рассмотрим ΔABC и ΔEBF
1) ∠B - общий
2) ∠BAC = ∠BEF - из решения
Отсюда следует, что эти треугольники подобны.
Коэффициент подобия будет равен отношению BD и BO
k = BD : BO = 3x : 2x = 3 : 2
Из подобия AC : EF = 3 : 2
15 : EF = 3 : 2
3EF = 30
EF = 10 см
ответ: 10 см
5. Найдём AB по теореме Пифагора:
AB = √(25 + 75) = √100 = 10 см
Напротив угла в 30° лежит катет в два раза меньше гипотенузы.
AB = 2AC ⇒ ∠ABC = 30°
ответ: 10 см, 30°
6. sinβ = BH : BC
BH = sinβ * BC = 7sinβ
tg α = BH : AH
AH = BH : tgα = 7sinβ : tgα
ответ: 7sinβ : tgα