Точка Е- середина боковой стороны АВ трапеции АВСD. Докажите, что площадь треугольника ЕСD равна половине площади трапеции.
Сделаем рисунок, проведем прямую ЕК параллельно основаниям трапеции.
ЕК - средняя линия трапеции, т.к. АЕ=ВЕ, и ЕК || АD
Проведем высоту ВН, точку ее пересечения с ЕК обозначим М.
ВМ=ВН:2 =h1
МН=ВН:2=h2
S CKE=h1*EK:2
S KED=h2*EK:2
S ECD=S CEK+S KED= h1*EK:2+h2*EK:2=(h1+h2)*EK:2
Но (h1+h2)=Н ( высоте трапеции)
S ECD=H*EK:2
Площадь трапеции равна произведению высоты на полусумму оснований. S ABCD= H*EK= 2*H*EK:2=2 S ECD, что и требовалось доказать.
Объяснение:
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ .
Доказать: ΔАВС подобен ΔА₁В₁С₁.
Доказательство:
Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) .
Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках:
АВ₂ : А₁В₁ = АС : А₁С₁.
Сравним полученную пропорцию с данной в условии:
АВ : А₁В₁ = АС : А₁С₁
Значит, АВ₂ = АВ.
Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию).
Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит
ΔАВС подобен ΔА₁В₁С₁.
Доказано.