
Объем наклонного параллелепипеда можновычислить по формуле
V=Sосн.·H(высота параллелепипеда)
V=Sсеч.перпендикулярного боковому ребру·Lдлина бокового ребра.
Решаем по второй формуле.
Рассмотрим основание-ромб. ∠ADC=2∠BAD .Сумма углов в ромбе равна 360°, и противоположные углы равны. Выразим сумму углов ромба через ∠BAD.
2∠ADC+2∠BAD=2·2∠BAD+2∠BAD=6∠DAD -сумма углов в ромбе. Вычислим ∠BAD:
6∠BAD=360°
∠BAD=360°:6=60°.
∠DAC=2·60°=120°.
BD- диагональ ромба и лежит против угла в 60°. эта же диагональ делит угол 120° пополам (свойство диагоналей ромба), следовательно ΔABD- равносторонний.
BD=4 cm (по условию), AD=AB=BD=4 cm.
Построим сечение перпендикулярное к ребру AA₁. Продлим ребро CC₁ вниз..
Из точек B и D опустим перпендикуляры на ребра AA₁ и CC₁.На ребре АА₁ пересекутся в точке, назовем ее F, на ребре СС₁ пересекутся в точке, назовем ее K.
Получили сечение DFBK, перпендикулярное к боковым ребрам.
∠FAD=∠FAB=45°, AD=AB, ∠AFD=∠AFB=90°, ⇒ΔAFD=ΔAFB и точка F -общая точка.)
Рассмотрим ΔAFD. ∠AFD=90°,∠FAD=45°,⇒∠ADF=45°, треугольник равнобедреный и AF=FD. AD=4cm,
AD²=AF²+FD², AD²=2FD², 4²=2FD², FD²=16/2=8, FD=√8=2√2 cm
ΔAFD=ΔAFB=ΔDKB=ΔBKC=ΔDKC⇒FB=FD=KC=KD, pyfxbn d ct
Подробнее - на -
а) Доказательство:
АВ = ВМ, по условию, значит треугольник АВМ - равнобедренный. По свойству равнобедренного треугольника угол ВАМ = углу ВМА.
По свойству параллелограмма ВС параллельно АD, АС - секущая, значит угол АМВ = углу МАD, из вышесказанного следует, что угол ВАМ = углу МАD, значит АМ - биссектрисса
б) Решение:
АВ = СD по свойству параллелограмма,а АВ = ВМ из доказательства. Значит АВ = ВМ = СD = 8 см
МС = 4 по условию. ВС = ВМ + МС = 8 + 4 = 12. По свойству параллелограмма ВС = АD = 12
теперь можем найти площадь: Р = АВ + ВС + СD + DА = 8 + 12 + 8 + 12 = 40 см