В рівнобічній трапеції ABCD (AB=CD) бісектриса тупого кута В відтинає від трапеції паралелограм, а діагональ АС є бісектрисою кута А. Знайдіть кути і сторони трапеції, якщо її периметр дорівнює 50 см
В равносторонний трапеции ABCD (AB = CD) биссектриса тупого угла В отсекает от трапеции параллелограмм, а диагональ АС является биссектрисой угла А. Найдите углы и стороны трапеции, если ее периметр равен 50 см
Свойство пересекающихся хорд: Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны. Пусть это будут хорды АВ и СМ, Е -точка их пересечения. АЕ=ВЕ, СЕ=3, МЕ=12 Сделаем рисунок. Соединим А и М, С и В. Рассмотрим получившиеся треугольники АЕМ и ВЕС Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒ Треугольники АЕМ и ВЕС подобны Из подобия следует отношение: АЕ:СЕ=МЕ:ВЕ АЕ*ВЕ=СЕ*МЕ Так как АЕ=ВЕ, то АЕ²=3*12=36 АЕ=√36=6, АВ=2 АЕ=12 см
Пусть боковые стороны-х, меньшее верхнее основание-а, нижнее-в т.к. в трапецию можно вписать окружность, то справедливо равенство, что х+х=а+в, т.к. Р=200, то 100=100, т.к. х+х=100, и а+в=100, т.е. х=50, а+в=100 применим известную площадь. S=h*(а+в)/2, h=S*2/(а+в)=40 высота =40, боковая сторона 50. опустим высоты из верхнего основания. по бокам образовались треугольники, найдем их основания-по Т. Пифагора=30 (треугольники со сторонами 30,40,50) нижнее основание в=30+30+а, т.к. а+в=100, то а+(30+30+а)=100, а=20, следовательно, в=80 в равнобедренной трапеции диагонали образуют подобные треугольники (верхний с верхним основанием, и нижний с нижним основание) по двум углам, коэфициент подобия - а:в=20:80=1:4. следовательно, и высоты этих треугольников относятся как 1:4, возьмем за меньшую высоту у, т.е. если вся высота 40, то 1у+4у=40, у=8
В равносторонний трапеции ABCD (AB = CD) биссектриса тупого угла В отсекает от трапеции параллелограмм, а диагональ АС является биссектрисой угла А. Найдите углы и стороны трапеции, если ее периметр равен 50 см