См. рис.
Так как AD - диаметр окружности, то угол ∠ABD = 90°
Следовательно, оставшийся угол прямоугольного
треугольника ΔABD: ∠BAD = 90 - 65 = 25°
Так как угол ∠BAD - вписанный, то величина дуги, на которую он опирается:
∪BCD = 2 · ∠BAD = 50°
Искомый угол ∠С = ∠BCD опирается на оставшуюся дугу
окружности:
∪BAD = 360 - ∪BCD = 360 - 50 = 310°
И величина угла ∠С = 310 : 2 = 155°
Причем, величина угла ∠С не зависит от местоположения точки С на дуге ∪BCD, так как в любом случае этот угол опирается на дугу ∪BAD, равную 310°
Тело вращения будет походить на детскую игрушку юла.
Т.е. верхняя и нижняя части - два конуса с общим основанием АА₁ и радиусом, равным высоте АО данного треугольника, проведенным к средней по величине стороне, равной 14 см.
Чтобы найти эту высоту, нужно найти по формуле Герона площадь треугольника. Вычисления приводить не буду - треугольник с такими сторонами встречается в задачах часто, его площадь легко запоминается и равна 84 см²
S=a*h:2, где а - сторона, h- высота к ней.
2S=a*h
h=2S:а
h=168:14=12 см - это радиус окружности - общего основания конусов.
Рассмотрим рисунок.
Площадь тела равна сумме площадей боковых поверхностей конуса АВА₁ и конуса АСА₁
S =πrl
S₁=π*12*13
S₂=π*12*15
S общ=12π(13+15)=336 π
при π=3,14
S=1055,04см²
при π полном ( на калькуляторе)
S=1055,575 см²