Ну вообще-то по определению фигуры равны , если они совпадают при наложении. Если треугольники равны, то и все их соответствующие элементы при наложении совпадают. Но раз уж от Вас требуют еще какого-то доказательства, то можно и так: Пусть есть тр-ки АВС и А1 В1 С1 равны. Покажем, например, что биссектриса АН = биссектрисе А1 Н1. Для этого заметим, что треугольники АНВ и А1 Н1 В1 равны по ВТОРОМУ признаку равенства треугольников ( по стороне и двум прилегающим углам). Так же и про остальные биссектрисы.
1) Угол ВАС = углу АСД (накрест лежащие при ВС пар-но АД и секущей АС) Углы АСТ и ТСД равны(по условию) Они по 30 градусов Рассмотрим треугольник СТД. Угол С = 30 градусов, угол Д = 90 градусов А катет, лежащий против угла 30 градусов равен половине гипотенузы СТ = 6*2 = 12 По теореме пифагора СД =корень квадратный из 144-38 =к.к. из 108 = 6 корней из 3 А периметр равен: 18*2 + 6 √3 * 2 =36 + 12√3 Если есть ответы, сверься, потому что то, что Р и Е середины я не использовала, и зачем дана точка О тоже не понятно. Условие точно правильное, потому что у треугольнико АСД не может быть бис-сы, а вот у угла АСД - вполне
решение на фотографии