АВСД - прямоуг. трапеция , АД║ВС , ∠А=∠В=90° , ВС=ВД
СН⊥АД , СН∩ВД=К , СК=20 см , КН=12 см .
СК:КН=20:12 ⇒ СК:КН=5:3
ΔВСД - равнобедренный, т.к. ВС=СД ⇒ ∠ВСД=∠СДВ .
∠ВСД=∠ВДА как накрест лежащие при параллельных АД и ВС и
секущей ВД ⇒
∠СВД=∠ВДА ⇒ ВД - биссектриса
ΔСДН: ВК - биссектриса, по свойству биссектрисы:
СК:СД=КН:ДН ⇒ СД:ДН=5:3 ⇒ СД=5х , ДН=3х .
СН²=СД²-ДА²=(5х)²-(3х)²=16х² ⇒ СН=4х , 4х=(20+12) , 4х=32 , х=8
СД=5·8=40 (см) , ДН=3·8=24 (см)
ВС=СД=40 см ⇒ АН=ВС=40 см ( как противоположные стороны прямоугольника АВСН ⇒ АД=АН+НД=40+24=64 (см)
S(АВСД)=(АД+ВС):2·СН=(64+40):2·32=1664 (см²)
Объяснение:
1. 1) любые две точки всегда принадлежат прямой, т.к. через две различные точки можно провести одну и только одну прямую, а уж если две точки сливаются в одну - и тем более.
2) Любые три точки всегда лежат в одной плоскости, поскольку через три точки, не лежащие на одной прямой, можно провести плоскость, и притом только одну, если же они находятся на одной прямой, то через них можно провести бесчисленное множество плоскостей, и выбрать одну, в которой лежат эти точки, а вот четвертую точку можно положить в плоскость, или "подвесить" в пространство, т.е. ответ на этот вопрос НЕТ. т.к. не всегда.
2. Если две различные плоскости имеют общую точку, то они пересекаются по ПРЯМОЙ, проходящей через эту точку. т.е. общих не только одна, а все, лежащие на прямой. ответ НЕТ.
3. Нет. Т.к. не всегда третью можно положить на ту же плоскость, даже если они все три пересекаются. Нарисуйте две пересекающиеся прямые, они всегда лежат в одной плоскости и проведите прямую, которая проходит через точку пересечения, перпендикулярно двум данным, т.е. плоскости. Ясно, что эта третья прямая не лежит в данной плоскости.
4.1) Прямая, имеющая только одну общую точку с окружностью, так и называется касательной к окружности, если речь о плоскости.
2) если речь о пространстве, то та прямая, которая перпендикулярна радиусу, будет касательной, если же прямаЯ, проходящая через эту единственную точку, не перпендикулярна радиусу, касательной к окружности она не будет. Поэтому здесь ответ нет.
Средняя линия трапеции параллельна основаниям, а длина ее равна полусумме оснований.
Если средняя линия с=7 см, одно основание а=5 см, другое основание b, то значит с=(а+b)/2
7=(5+b)/2
b=9 см.