проекция Точки A на плоскость (A1B1C1)=A1, проекция точки D=D1, значит проекция отрезка AD=A1D1.
Отрезок A1D1║B1C1 из свойств правильного шестиугольника, и A1D1║AD так как плоскость (ABC)║(A1B1C1) значит AD║B1C1 Ч.Т.Д.
б)
Рассмотрим треугольник A1B1C1, опустим высоту A1H на основание B1C1, AH Также будет ⊥B1C1 по теореме о трех перпендикулярах, значит AH искомое расстояние.
AA1 будет ⊥A1H так-как он ⊥ плоскости (A1B1C1).
найдем A1H методом площадей в треугольнике A1B1C1.
1) Данный треугольник - равнобедренный, т.к. в нем второй угол тоже 45 градусов.
Треугольник, образованный средними линиями, будет подобен исходному, т.к. катеты нового в точке пересечения с серединой гипотенузы образуют прямой угол, а сами катеты равны половинам исходных. Коэффициент подобия равен 2 (средняя линия равна половине стороны, которой она параллельна).
Длину катетов равнобедренного прямоугольного треугольника найдем по формуле: с²=2а², где с - гипотенуза, а - катеты 64=2а² а²=32 а=4√2 см Периметр большего треугольника равен 8+2*4√2=8(1+√2) см Периметр треугольника, образованного средними линиями, относится к периметру исходного так же , как средние линии относятся к сторонам, которым они параллельны. т.е 1:2 Периметр получившегося треугольника - 8(1+√2):2=4(1+√2) см -------------------- 2) В треугольнике медианы точкой пересечения делятся в отношении 2:1, считая от вершины.
Смотрим рисунок. Точка пересечения медиан отмечена О, пересечение медианы со стороной АС - М со стороной ВС - К. Дано: АВС- равнобедренный треугольник. ВО=14 АО=25
ОМ=ВО:2=7 см Рассмотрим треугольник АОМ. Он прямоугольный, т.к. в равнобедренном треугольника медиана=биссектриса=высота,если проведена к основанию. По теореме Пифагора найдем АМ - половину АС. АМ =√(25²-7²)=24 АС=24*2=48 ВМ=ВО:2*3=14:2*3=21 АВ=√(24²+21²)=≈31,89 см АВ=ВС=≈31,89
а)
проекция Точки A на плоскость (A1B1C1)=A1, проекция точки D=D1, значит проекция отрезка AD=A1D1.
Отрезок A1D1║B1C1 из свойств правильного шестиугольника, и A1D1║AD так как плоскость (ABC)║(A1B1C1) значит AD║B1C1 Ч.Т.Д.
б)
Рассмотрим треугольник A1B1C1, опустим высоту A1H на основание B1C1, AH Также будет ⊥B1C1 по теореме о трех перпендикулярах, значит AH искомое расстояние.
AA1 будет ⊥A1H так-как он ⊥ плоскости (A1B1C1).
найдем A1H методом площадей в треугольнике A1B1C1.
$$\begin{lgathered}S=\frac{1}{2} A_1B_1*B_1C_1*sin(120)=\frac{1}{2} B_1C_1*A_1H\\a^2*sin(120)=a*A_1H\\A_1H=a*sin(180-60)=a*sin(60)=\frac{a\sqrt{3}}{2}\end{lgathered}$$
A1H также можно было найти рассмотрев треугольник A1BH, сказав что A1H=A1B1*sin(60)
теперь по теореме пифагора найдем AH:
$$AH=\sqrt{A_1H^2+AA_1^2}=\sqrt{\frac{4a^2}{4}+\frac{3a^2}{4}}=\frac{a\sqrt{7}}{2}$$
ответ: $$AH=\frac{a\sqrt{7}}{4}$$