Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
Чтобы определить линейный угол двугранного угла, надо к линии пересечения плоскостей (граней угла) провести перпендикуляры в обеих плоскостях. Угол между проведёнными перпендикулярами и будет искомым углом. Удобно, когда перпендикуляры проводятся из одной точки,лежащей на линии пересечения.Определим линейный угол двугранного угла DABС. Линия пересечения плоскостей - АВ. Точка D лежит в пл. АВD , а точка С - в пл. АВС. Проведём СH⊥AB в пл АВС ⇒ СH явл. перпендикуляром в пл. AВС к АВ. СH явл. также биссектрисой и медианой, т.к. ΔАВС равносторонний, все его стороны = 6 , ВН=6:2=3, СН=√(АС²-АН²)=√(6²-3²)=√(36-9)=√27=√(9·3)=3√3 . Соединим точку D и Н. DH - наклонная, DС - перпендикуляр к пл. АВС ⇒СН - проекция наклонной DH на пл. АВС. Т.к. проекция СН ⊥АВ ⇒ по теореме о трёх перпендикулярах тогда и наклонная DH⊥AB. DH явл. перпендикуляром к АВ в пл. ABD.Найдём DН из ΔABD. ⇒ DH=√(DB²-BH²)=√((3·√7)²-3²)=√(9·7-9)=√54=√(9·6)=3√6 . Получили, что DH⊥AB и CH⊥AB ⇒ линейный ∠DHC - есть линейный угол двугранного угла DABC. (Из сказанного следует ещё,что AB⊥пл.DCH)∠DHC найдём из ΔDCH. ∠DCH=90°, cos∠DHC=CH/DH=(3√3)/(6√3)=√(3/6)=√(1/2)=1/√2=√2/2 ⇒ ∠DHC=45°. Двугранному углу DACB соответcтвует линейный угол DCB, т.к. пл.ВАС перпендикулярна пл.DAC , то ∠DCB=90°. Двугранному углу BDCA соответствует линейный ∠АСВ, т.к. DС⊥AC и DC⊥BC.∠АСВ=60° как угол равностороннего треугольника . ответ: 90° , 45° , 60° .
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129
Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301