Док-ть: АD + СВ = АВ Решение. Продолжим стороны ВС И АD от точек С и D до пересечения в точке О. Полученный Δ АОВ – равносторонний, т.к. ∠DАВ = ∠АВС = 60° по условию, значит, и ∠АОВ = 180° – 60° – 60° = 60°. Из равенства углов следует равенство сторон: АВ = ОВ = АО Рассмотрим ΔАВС и ΔВОD; ∠АВС = ∠ВОD = 60°; ∠САВ = ∠СВD по условию, стороны между углами также равны: АВ = ОВ. ⇒ ΔАВС = ΔВОD Из равенства треугольников следует: CВ = ОD Но АО = ОD + АD, заменив АО на АВ, а ОD на СB получим: АВ = CВ + АD, что и требовалось доказать!
Тут подобие треугольников: большой треугольник( высота фонаря, сумма расстояния от фонаря до человека + длина тени, расстояние от "макушки " фонаря до конца тени) и маленький треугольник ( высота человека, длина тени, расстояния от "макушки" человека до конца тени). Как мы знаем отношение соответственных сторон у подобных треугольников равно коэффициенту подобия. Из этого следует, что высота фонаря(9м) относится к высоте человека (2м), так же как растояние от фонаря(Х) к тени(1м) 9:2=Х:1( решаем пропорцией) 2Х=9 Х=4,5 Удачи в познаниях!
∠DАВ = ∠АВС = 60° ;
∠САВ = ∠СВD
Док-ть: АD + СВ = АВ Решение.Продолжим стороны ВС И АD от точек С и D до пересечения в точке О. Полученный Δ АОВ – равносторонний, т.к. ∠DАВ = ∠АВС = 60° по условию, значит, и ∠АОВ = 180° – 60° – 60° = 60°.
Из равенства углов следует равенство сторон: АВ = ОВ = АО
Рассмотрим ΔАВС и ΔВОD; ∠АВС = ∠ВОD = 60°; ∠САВ = ∠СВD по условию, стороны между углами также равны: АВ = ОВ. ⇒
ΔАВС = ΔВОD
Из равенства треугольников следует: CВ = ОD
Но АО = ОD + АD, заменив АО на АВ, а ОD на СB получим:
АВ = CВ + АD, что и требовалось доказать!
Решение с рисунком дано в приложении.