Опустим из вершин меньшего (верхнего) основания перпендикуляры (по факту высоты) на большее основание. Они будут равны диаметру вписанной окружности D=2r=2*4=8. Тогда они образуют с боковыми сторонами прямоугольные треугольники. Тогда катеты обоих этих треугольников, лежащие на основании (т. е. проекции боковых сторон на основание) по теореме Пифагора будут равны √(x²-64). Тогда меньшее основание будет равно 16-2* √(x²-64). Зная, что по свойству описанного четырехугольника, суммы противоположных сторон данной трапеции равны, составим и решим уравнение:
2x=16+(16-2* √(x²-64))
2x=32-2* √(x²-64) сократим на 2
x=16-√(x²-64)
√(x²-64)=16-x возведем обе части в квадрат и получим
x²-64=256-32x+x² x² взаимно сокращаются
-64=256-32x
32x=256+62=320
x=320/32=10 - длина боковой стороны
Тогда все по тому же свойству сумма оснований равна сумме боковых сторн, т. е. 10+10=20. Длина же средней линии будет равна половине суммы оснований (по теореме о средней линии), т. е. 20/2=10
ответ: 10
1) Диагонали параллелограмма равны. НЕВЕРНО
Диагонали равны только у разновидностей параллелограмма : у прямоугольника и квадрата.
2) Катет прямоугольного треугольника, лежащий против угла 30°, равен половине гипотенузы. ВЕРНО
3) В прямоугольной трапеции ровно один прямой угол. НЕВЕРНО
Боковая сторона, которая образует прямой угол с одним основанием трапеции, является перпендикуляром к двум параллельным основаниям, значит, она образует прямой угол со вторым основанием тоже. Всего в прямоугольной трапеции 2 прямых угла. Если в трапеции будет 4 прямых угла, то это будет прямоугольник.
4) Сумма углов четырёхугольника равна 360°. ВЕРНО