Задание 1.
ΔCAP- прямоугольный ⇒ ∠С= 90° (по условию)
Так как ∠СPA=65°, сумма углов в Δ = 180° ⇒ ∠CAP= 180°-90°-65°=25°
Так как AP-биссектриса ⇒ ∠CAP = ∠BAP (по условию), то есть ∠CAP = ∠BAP = 25°
ΔCAB - прямоугольный ⇒ ∠С= 90° (по условию)
∠CBA= 180°-90°-25°=65° (так как сумма углов в Δ = 180°)
ответ: 25°, 65°
Задание 2.
∠1=∠3 (как накрест лежащие) ⇒ ∠3=140°
∠1=∠2 (как соответственные) ⇒ ∠2=140°
∠3=∠6 (как односторонние) ⇒ ∠6=180°-140° = 40°
∠4=∠6 (как соответственные) ⇒ ∠4=40°
∠5=∠3 (как соответственные) ⇒ ∠5=140°
ответ: 140°, 140°, 40°, 140°, 40°
Точка пересечения медиан - это точка О.
По свойству медиан АО = (2/3)*9 = 6, ОА1 = 3.
ВО = (2/3)*12 = 8, ОВ1 = 4.
По трём сторонам треугольника АВО находим его площадь (формула Герона).
Полупериметр р =(10+8+6)/2 = 24/2 = 12.
S = √(12*2*4*6) = √(24*24) = 24.
Площадь треугольника АВО составляет 1/3 треугольника АВС.
Тогда S(АВC) = 3*24 = 72 кв.ед.
По соотношению квадратов сторон треугольника АВО (10² = 8² + 6²) видно, что он прямоугольный.
Значит, медианы пересекаются под прямым углом.
Отсюда находим стороны:
ВС = 2√(8² + 3²) = 2√(64 + 9) = 2√73.
АС = 2√(6² + 4²) = 2√(36 + 16) = 2√52.
Теперь можно найти длину медианы СС1 по формуле:
mc = (1/2)*√(2a² + 2b² - c²).
СС1 = (1/2)√(2*292 + 2*208 - 100) = (1/2)*√900 = 15.