Всё это нужно доказывать при трёх признаков равенства треугольников
рис. 1 - две стороны треугольников соответсвенно равны (ВС=СД, АС=СЕ), как и углы между этими сторонами (ВСА=ЕСД так как они являются вертикальными углами). в целом признак звучит как «Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны»
рис. 2 - тут тот же признак. две стороны и угол одного треугольника соответственно равны двум сторонами и углу второго треугольника (ДЕ=ДК, ДС - равна для обоих, ибо является общей, углы ЕДС=СДК)
рис. 3 - треугольник ВЦП равнобедренный, то бишь медиана, делящая основу ВР на две равных части, выступает, к тому же, и высотой. Тогда, по первому признаку равенства треугольников, треугольники ВЦО=ЦОР (ВО=ОР, ЦО общая, прямые углы одинаковы для обоих треугольников из-за проведённой высоты)
рис. 4 - всё то же самое, главное найти соответственные стороны и углы. СФ=ДЕ, СЕ - общая, углы ФСЕ=СЕД (как внутренние разносторонние углы при параллельных СФ и ДЕ и секущей СЕ)
Дано :
∠3 = 70°.
∠4 = 100°.
Найти :
При каком значении угла ∠1 угол ∠2 = 80°.
Давайте допустим, что уже ∠2 = 80°.
Тогда рассмотрим внутренние односторонние ∠4 и ∠2 при пересечении двух прямых a и b секущей d.
Если при пересечении двух прямых секущей сумма двух односторонних углов равна 180°, то эти прямые параллельны.Так как -
∠4 + ∠2 = 100° + 80° = 180°
То -
a ║ b.
Рассмотрим эти же прямые, но только тогда, когда они пересечены секущей с.
∠1 и ∠3 - соответственные.
При пересечении двух параллельных прямых секущей соответственные углы равны.Следовательно -
∠1 = ∠3 = 70°.
Это значит, что если ∠1 = 70°, то ∠2 = 80°.
70°.