ответ: 60°; 15°.
Объяснение:
16) из уравнения окружности следует, что радиус окружности =
V18 = 3V2 = CA = CB
радиус, проведенный в точку касания, перпендикулярен касательной, ---> треугольники СВО и САО -это равные прямоугольные треугольники (по гипотенузе и катету);
СО -биссектриса угла АОВ, т.е. достаточно найти острый угол прямоугольного треугольника (например, СОА) и умножить на 2...
гипотенуза СО -это диагональ квадрата со стороной 6, СО=6V2;
sin(COA) = 3V2 / (6V2) = 1/2
угол СОА = 30°
угол ВОА = 60°
10) прямая у=х -это биссектриса первого и третьего координатных углов, т.е. угол наклона прямой ОВ к оси ОХ 45°; вторая прямая имеет угловой коэффициент k=V3 -это тангенс угла наклона прямой к оси ОХ (можно построить соответствующие прямоугольные треугольники), т.е. угол наклона прямой ОА к оси ОХ 60°;
искомый угол = разности этих углов 60°-45°=15°.
С линейки проводим прямую и на ней с циркуля отложим отрезок АВ, равный отрезку МК. Для этого произвольно на прямой ставим точку А, с циркуля измеряем отрезок МК и строим окружность с центром в точке А радиуса МК (всю окружность строить необязательно, смотри, выделенное красным цветом). Точку пересечения окружности с прямой обозначаем В.
Далее строим угол ВАF равный углу 1. Для этого строим с циркуля окружность радиуса МК с центром в вершине угла 1 (всю окружность строить необязательно, смотри, выделенное красным цветом). Точки пересечения данной окружности со сторонами угла 1 обозначаем N и Р.
С циркуля измеряем длину отрезка NP и строим окружность радиуса NP с центром в точке В (всю окружность строить необязательно, смотри, выделенное синим цветом). Точку пересечения окружности с окружностью радиуса МК с центром в точке А обозначаем F.
Далее, проводим луч АF с линейки.
Далее, строим угол АВD равный углу 2. Для этого строим с циркуля окружность радиуса МК с центром в вершине угла 2 (всю окружность строить необязательно, смотри, выделенное красным цветом). Точки пересечения данной окружности со сторонами угла 2 обозначаем О и Е.
С циркуля строим окружность радиуса МК с центром в точке В (всю окружность строить необязательно, смотри, выделенное красным цветом), затем измеряем длину отрезка ОЕ и строим окружность радиуса ОЕ с центром в точке А (всю окружность строить необязательно, смотри, выделенное синим цветом). Точку пересечения данных окружностей обозначаем D.
Далее, проводим луч ВD с линейки.
Точку пересечения лучей АF и ВD обозначаем С. Получаем треугольник АВС, в котором по построению АВ = МК, ВАС =1, АВС =2, следовательно, треугольник АВС - искомый.
Данная задача не всегда имеет решение. Так как по теореме о сумме углов треугольника: сумма углов всякого треугольника равна 1800. Значит, сумма двух данных углов должна быть меньше 1800. Если же сумма двух данных углов будет больше 1800, то нельзя построить треугольник, углы которого равнялись бы данным углам.
Объяснение: