ответ:СС1=6,6-3=3,6
Объяснение:
можно посчитать длину СС1 исходя из соотношения проекций АА1 и ВВ1. Сложив 8 и 3, получим 11, соответственно общая длина АВ в проекции будет равна 11. Разделив 11 на 5 отрезков (т. к. отношение АС и СВ 2:3) получим, что длина проекции условного отрезка равна 2,2. Умножив это значение на 3, получаем 6,6. Это была бы длина отрезка СС1, если бы точкой пересечения плоскости а была бы точка В, но постольку поскольку точка В лежит на противоположной стороне отрезка нужно вычесть длину отрезка ВВ1 из 6,6. Получается, что длина отрезка СС1=6,6-3=3,6
Задание: написать уравнение прямой ax+by+c=0, все точки которой находятся на равных расстояниях от точек A(5;2) и B(9;8) .
Геометрическое место точек, равноудалённых от точек А и В, это перпендикуляр к середине отрезка АВ.
Находим координаты точки С - середины отрезка АВ.
С = ((5+9)/2; (2+8)/2) = (7; 5).
Теперь находим уравнение прямой АВ.
Вектор АВ = (9-5; 8-2) = (4; 6). Это направляющий вектор прямой АВ.
У перпендикулярного вектора координаты такие, что скалярное произведение его и вектора прямой равно 0.
Значит, направляющий вектор перпендикуляра равен(-6; 4).
Используем координаты точки С(7; 5)..
ответ: уравнение искомой прямой (х - 7)/(-6) = (у - 5)/4 это в каноническом виде, или в общем виде 2х + 3у - 29 = 0.