8√3 см²
Объяснение:
От концов меньшего основания опустим перпендикуляры на нижнее основание. Образуются два равных прямоугольных треугольника с острыми углами 60° и 30°.Нижнее основание этитми перпендикулярами поделит на равные отрезки 6/3=2 см Катет в прямоугольном треугольнике будет равен 2 см, он лежит против угла в 30°. Значит гипотенуза будет в 2 раза больше. Гипотенузой будет боковая сторона трапеции и равна она будет 4 см. Высота трапеции вычисляется по теореме Пифагора h²=4²-2²=16-4=12; h=√12=2√3.
Можно вычислить теперь площадь трапеции
S=(2+6)/2·2√3=8√3
Дано : ∠В=∠D=90° ,AB=CD. Доказать : АО=СО
Доказательство .
:
∠ВОА=∠DOC как вертикальные .
ΔАВО=ΔCDO как прямоугольные по равным катетам АВ= CD и противолежащим углам ∠ВОА=∠DOC .В равных треугольниках соответственные углы равны ⇒ АО=СО
:
∠ВОА=∠DOC как вертикальные . Пусть ∠ВОА=∠DOC =х
ΔАВО-прямоугольный , ∠ВАО=90°-∠ВОА=90° -х.
ΔCDО-прямоугольный , ∠DCО=90°-∠DOC=90° -х.
Поэтому ∠ВАО=∠DOC.
ΔАВО=ΔCDO как прямоугольные по равным катетам АВ= CD и прилежащим углам ∠ВАО=∠DOC. В равных треугольниках соответственные углы равны ⇒АО=СО
=========================
Признаки : Два прямоугольных треугольника равны, если равны катет и противолежащий острый угол одного треугольника катету и противолежащему углу другого треугольника.
Два прямоугольных треугольника равны, если катет и прилежащий острый угол одного треугольника равны катету и прилежащему острому углу другого треугольника.