19.1. Прямая пересекает окружность. Как называется фигура, яв-
ляющаяся пересечением (общей частью) этой прямой и круга,
ограниченного данной окружностью?
сегмент
19.2. Сколько касательных к данной окружности можно провести
через данную точку, расположенную:
а) внутри окружности;нисколько
б) вне окружности; бесконечно много
в) на окружности? - одну
19.3. Сколько можно провести окружностей, касающихся данной
прямой в данной точке? две (по одной с разных сторон прямой)
19.4. Сколько можно провести окружностей данного радиуса, каса-
ющихся данной прямой в данной точке? две (по одной с разных сторон прямой)
19.5. Какой угол образуют касательная к окружности и радиус,
проведенный в точку касания?
90°
Объяснение:
Дано:
∠А = 90°
ВС = 7 см
AD = 10 см
СD = 5 см
Найти:
АВ - меньшая боковая сторона
Поскольку трапеция прямоугольная и ∠А = 90°, то и ∠В = 90° и меньшая сторона трапеции АВ является высотой трапеции
Из вершины С опустим высоту СК на большую сторону AD трапеции.
СК = АВ
Высота СК делит большее основание AD трапеции на два отрезка
АК = ВС = 7 cм и KD = AD - AK = 10 см - 7 см = 3 см
ΔСКD - прямоугольный с гипотенузой CD = 5 cм
По теореме Пифагора
CD² = CK² + KD²
5² = CK² + 3²
CK² = 25 - 9 = 16
CK = 4 (см)
Поскольку АВ = СК, то АВ = 4 см
Меньшая сторона трапеции АВ = 4 см