Марина хочет сделать цветочную клумбу в форме параллелограмма у неё есть 16, 6м декоративного заборчика Какой длины должна быть вторая сторона клумбы если одна сторона равна 3,2 м
Пусть точки, делящие боковую сторону на 3 части называются М и К. Назовем параллельные основаниям прямые ММ1 и КК1. Рассмотрим трапеции АВСД и МВСМ1. Т.к. ММ1 || АД, а АВ - секущая к ним, то углы ДАВ и М1МВ равны. Аналогично доказываем, что угол АДС = ММ1С, значит эти трапеции подобные. Т.к. АК=КМ=МВ=АВ/3, то к-т подобия между трапециями МВСМ1 и АВСД = 1/3, т.е. ММ1:АД=1:3. Отсюда ММ1=14/3.
Аналогично трапеции КВСК1 и АВСД подобны с коэффицциентом 2/3, т.к. КВ:АВ=2:3. Значит КК1:АД=2:3, отсюда КК1=14*2/3=7/3
Вариант решени. Пусть дан треугольник АВС. Угол С=90° СН - высота=24 R=25 Радиус окружности, описанной вокруг прямоугольного треугольника, равен половине гипотенузы.
АВ=2R=2*25=50
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой:
СН²=АН*ВН ВН=АВ-АН Примем АН равной х, тогда ВН=50-х 24²=х*(50-х) 576=50х-х² х²-50х+576=0 Дискриминант равен: D=b² -4ac=-50² -4·576=196 х₁=(50+√196):2=32 х₂=(50-√196):2=18 Оба корня равны частям АВ. АН=32 ВН=18
Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и отрезком гипотенузы, заключенным между катетом и высотой.
Пусть точки, делящие боковую сторону на 3 части называются М и К. Назовем параллельные основаниям прямые ММ1 и КК1. Рассмотрим трапеции АВСД и МВСМ1. Т.к. ММ1 || АД, а АВ - секущая к ним, то углы ДАВ и М1МВ равны. Аналогично доказываем, что угол АДС = ММ1С, значит эти трапеции подобные. Т.к. АК=КМ=МВ=АВ/3, то к-т подобия между трапециями МВСМ1 и АВСД = 1/3, т.е. ММ1:АД=1:3. Отсюда ММ1=14/3.
Аналогично трапеции КВСК1 и АВСД подобны с коэффицциентом 2/3, т.к. КВ:АВ=2:3. Значит КК1:АД=2:3, отсюда КК1=14*2/3=7/3