Х-1 часть;так как у нас имеется соотношение чисел,то исспользуем х-ы.Запишем формулу периметра треугольника : 3х+4х+6х=130;130=13х;х=10; Подставляем значение х и получаем треугольник со сторонами 30см,40см и 60см. Далее из условия узнаем ,сто нам необходимо найти длину сторон теугольника,вершинами которого являются середины сторон данного треугольника,то есть по сути стороны искомого треугольника будут средними линиями для треугольника с периметром 130см.Следовательно стороны искомого треугольника будут в два раза меньше данного ,а это соответствует числам:15см,20см ,30см
1. Рассмотрим параллелограмм ABCD. Диагональ AC разделяет его на два треугольника: ABC и ADC. Эти треугольники равны по стороне и двум прилежащим углам (AC-общая сторона, угол 1=углу 2 и угол 3=углу 4 как накрест лежащие углы при пересечении секущей AC и CD, AD и BC соответственно). Поэтому AB=CD, AD= BC и угол B=углу D. Далее, пользуясь равенствами углов 1 и 2, 3 и 4, получаем угол A=углу 1+угол 3=угол 2+угол 4=углу C. 2. Пусть О-точка пересечения диагоналей AC и BD параллелограмма ABCD. Треугольники AOB и COD равны по стороне и двум прилежащим углам (AB=CD как противоположные стороны параллелограмма, угол 1= углу 2 и угол 3=углу 4 как накрест лежащие углы при пересечение параллельных прямых AB и CD секущими AC и BD соответсвенно). Поэтому AO=OC и OB=OD, что и требовалось доказать
3х+4х+6х=130;130=13х;х=10;
Подставляем значение х и получаем треугольник со сторонами 30см,40см и 60см.
Далее из условия узнаем ,сто нам необходимо найти длину сторон теугольника,вершинами которого являются середины сторон данного треугольника,то есть по сути стороны искомого треугольника будут средними линиями для треугольника с периметром 130см.Следовательно стороны искомого треугольника будут в два раза меньше данного ,а это соответствует числам:15см,20см ,30см