M и N – середины боковых сторон трапеции ABCD, тогда отрезок MN – средняя линия трапеции.
Свойства средней линии трапеции:
1) средняя линия трапеции параллельна основаниям;
2) средняя линия трапеции равна половине суммы оснований.
Тогда, по 1 свойству, прямая, проходящая через среднюю линию MN, будет параллельна прямой, проходящей через основание АD.
Признак параллельности прямой и плоскости:
Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна самой плоскости.
Получается:
MN параллельна АD, АD лежит в плоскости α, следовательно, по признаку параллельности прямой и плоскости, MN || α.
По второму свойству средней линии трапеции:
MN = (ВС + АD)/2
АD = 2·MN – ВС
АD = 2∙6 – 4
АD = 8
Точка пересечения биссектрис АМ и ДМ, очевидно, находится на стороне ВС.
Угол АМВ = угол МАД (накрест лежащие углы для параллельных ВС и АД, секущей АМ) , угол АМВ = угол МАД (так как АМ - биссектриса) .
Треугольник АВМ равнобедренный, АВ = ВМ.
Угол СМД = угол АДМ (накрест лежащие углы для параллельных ВС и АД, секущей ДМ) , угол АДМ = угол СДМ (так как ДМ - биссектриса) .
Треугольник СМД равнобедренный, СМ = СД.
АВ = СД (противоположные стороны параллелограмма) .
Поэтому АВ = ВМ = СМ, ВС = ВМ + СМ = 2*АВ.
Периметр 2*(АВ + ВС) = 2*3*АВ = 36 см.
АВ = 6 см, ВС = 12 см.
AB - гипотенуза треугольника ABK
AK - катет треугольника ABK
BK - катет треугольника ABK
BK - катет треугольника CBK
Объяснение: