Так как в условии не указано, к какой из сторон проведена высота, то возможны ТРИ случая ( так как в треугольнике три стороны.
Площадь треугольника равна S = (1/2)*a*h, где h - высота треугольника, а - сторона, к которой проведена высота.
1) S = (1/2)*85*36 = 1530 см².
2) S = (1/2)*60*36 = 1080 см².
3) Найдем третью сторону треугольника из двух прямоугольных треугольников, на которые делит данный треугольник высота, проведенная к третьей стороне.
По Пифагору одна часть третьей стороны равна √(85²-36²) = 77 см.
Вторая часть третьей стороны равна √(60²-36²) \= 48 см.
Третья сторона равна 77+48 = 125 см. Тогда
S = (1/2)*125*36 = 2250 см².
ответ: S1 = 1530см², S2 = 1080см², S3 = 2250см².
и пусть AO = k*AM (если докажем, что k =2/3, то это и будет означать, что AO = 2 OM)
поскольку для каждой медианы те же рассуждения можно провести, то соотношение везде одинаково. (кроме того, OM = (1-k)AM, OK = (1-k)CK)
Запишем равенство векторов: AO+OK= AK = (AB)/2
kAM +(1-k)CK = AB/2
но AM = (AB+AC)/2, а CK = (CA+CB)/2
подставим:
k*AB/2 + k*AC/2 +(1-k)*CA/2 + (1-k)CB/2= AB/2 (умножим равенство на 2 и раскроем скобки)
kAB + kAC +CA - kCA +CB -kCB = AB
воспользуемся тем, что CB = AB-AC
kAB + kAC + CA -kCA +AB-AC -kAB +kAC = AB
AB сократится, останется
kAC + CA -kCA-AC +kAC = 0. AC ненулевой вектор, значит коэффициент должен равняться 0
(заменим CA на (-AC)), получим
3kAC -2 AC = 0
то есть, 3k =2, k =2/3