Через точку Q отрезка QA проведена плоскость альфа. Точка В принадлежит отрезку AQ, причем AB:BQ=1:2. Отрезок BC параллелен плоскости альфа и равен 5 см. Прямая АС пересекает плоскость альфа в точке D. Найдите расстояние между точками Q и D
Варианты ответов 10 см 7,5 см 12,5 см 15 см 17,5 см
В условии не указано какой угол=90, будем считать С и С1, АД-биссетриса, ВД=15, ДС=9, ДС/ВД=АС/АВ, АС=х, ВС=15+9=24, АВ =корень(ВС в квадрате+АС в квадрате)=корень(576+х в квадрате), 9/15=х/корень(576+х в квадрате), возводим обе части в квадрат, 81/225=х в квадрате/(576+х в квадрате), 225*х в квадрате=46656+81*х в квадрате, 144*х в квадрате=46656, х=18=АС, АВ=корень(576+324)=30, АВ/А1В1=30/20=3/2, АС/А1С1=18/12=3/2, ВС/В1С1=24/16=3/2, отношения сторон равны стороны пропорцианальны, треугольник АВС подобен треугольнику А1В1С1 по третьему признаку - стороны однного треугольника пропорцианальны сторонам другого треугольника
АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
10 см
Объяснение:
Я сам такое решал 10 см получилось