Соответственно
Решение на фото.
Два треугольника, которые можно совместить наложением, называются равными.
Из определения непосредственно следует: в равных треугольниках против равных сторон лежат равные углы и обратно — против равных углов лежат равные стороны.
Теорема 1 (первый признак равенства треугольников — по двум сторонам и углу между ними)
Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Дано: треугольник ABC и треугольник A_1B_1C_1, AB=A_1B_1, AC=A_1C_1, \angle{A}=\angle{A_1}.
Требуется доказать: треугольник ABC равен треугольнику A_1B_1C_1.
Доказательство:
Доказывается наложением одного из треугольников на другой. Треугольники полностью совместятся, следовательно, по определению они равны.
\boxtimes
Теорема 2 (второй признак равенства треугольников — по стороне и двум прилежащим углам)
Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Сделайте чертеж, запишите, что дано и что требуется доказать, и докажите наложением треугольников.
Теорема 3 (третий признак равенства треугольников — по трем сторонам)
Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
Запишите сокращенно условие и заключение теоремы.
Доказательство:
Для доказательства приложим треугольники большими сторонами. Треугольник A_1B_1C_1 займет положение AB_2C. Треугольник BAB_2 и треугольник BCB_2 — равнобедренные. Из равенства углов при основании получаем, что B=B_
Объяснение:
Рассмотри прямоугольный треугольник, образованный высотой пирамиды (катет) и апофемой ( гипотенуза)
Один из углов 60 гр, значит другой острый угол равен 30 гр,
Второй катет равен 2 см (половина стороны основания)
Значит гипотенуза равна 4 см (против угла в 30 гр лежит катет, в два раза меньший гипотенузы) .
Посчитай по теореме Пифагора высоту пирамиды
4^2 - 2^2 = h^2
h = 2V3это высота пирамиды
Каждая грань пирамиды - равнобедренный треугольник, у которого основание 4 см, а высота этого треугольника 4 см (апофема)
Площадь такого треугольника ---1/2 * 4 * 4 = 8 кв. см
Таких треугольников четыре
Площадь боковой поверхности ---8 * 4 = 32 кв. см
Объяснение:
діаметр вписаного = стороні = 20 см
діаметр описаного = діагоналі - ?
розглянемо правильний прямокутник трикутник, де діагональ є гіпотенузою:
за теоремою Піфагора: 20²+20²=x²
x - діаметр
400+400=x²
x²=800
Відповідь: 20 см; 20√2 см