Плоскостью общего положения называется плоскость: A)расположенная под углом к трем плоскостям проекций
B)расположенная под углом к двум плоскостям проекций
C)расположенная под углом к горизонтальной плоскости проекций
D)расположенная под углом к одной плоскости проекций
Пусть плоскости α и β параллельны, прямая а перпендикулярна плоскости α. Докажем, что эта прямая перпендикулярна и плоскости β.
В плоскости α проведем две пересекающиеся прямые b и с.
Так как прямая а перпендикулярна плоскости α, то она перпендикулярна каждой из этих прямых.
В плоскости β проведем прямые d║b и е║с.
Если прямая перпендикулярна одной из параллельных прямых, то она перпендикулярна и другой.
Значит, а ⊥ d и а ⊥ е.
Если прямая перпендикулярна двум пересекающимся прямым плоскости, то она перпендикулярна плоскости, ⇒
а ⊥ β.