в треугольнике abc, ac = cb = 8, угол acb = 120 градусов. точка m удалена от плоскости треугольника на расстоянии 12 см и находится на равном расстоянии от вершин треугольника abc.
найти угол между ma и плоскостью треугольника abc
точка m находится на равном расстоянии от вершин треугольника abc, следовательно, наклонные ма, мс и мв равны, их проекции также равны, а м проецируется в центр в описанное вокруг δ авс окружности.
оа = ов = ос = r
углы при а и в равны, как углы при основании равнобедренного треугольника.
1.Один из смежных углов х°, другой (х+32)°Сумма смежных углов 180°х+(х+32)=1802х+32=1802х=180-322х=148х=7474+32=106ответ.74°; 106° 2. см. рисунок Вертикальные углы равны между собой. Один угол х° и второй тоже х° х+х=146 2х=146 х=73° Два смежных с ними 180°-73=107° ответ 73°;107°73°107°
3. см. рисунок х+х+180-х=202 х=202-180 х=22 ответ. 22°; 158°;22°
4. см. рисунок Один из данных углов х, второй 2х х:2х=1:2 Смежный с первым 5у, смежный со вторым 4у, 5у:4у=5:4 Сумма смежных углов 180° х+5у=180 ⇒ х=180-5у 2х+4у=180 ⇒ 2·(180-5у)+4у=180; 360-10у+4у=180; 6у=180 у=30°
5у=150° 4у=120° х=180°-150°=30° 2х=60° ответ. один угол 30°, второй угол 60° 30:60=1:2 смежный с первым 150° смежный со вторым 120° 150°:120°=5:4
в треугольнике abc, ac = cb = 8, угол acb = 120 градусов. точка m удалена от плоскости треугольника на расстоянии 12 см и находится на равном расстоянии от вершин треугольника abc.
найти угол между ma и плоскостью треугольника abc
точка m находится на равном расстоянии от вершин треугольника abc, следовательно, наклонные ма, мс и мв равны, их проекции также равны, а м проецируется в центр в описанное вокруг δ авс окружности.
оа = ов = ос = r
углы при а и в равны, как углы при основании равнобедренного треугольника.
∠а = ∠в = (180º-120º): 2 = 30º
по т.синусов
r = (ac: sin 30º): 2 = (8: 0,5): 2 = 8 см
δ мoa - прямоугольный, мо = 12, ов = 8, и tg ∠mao = 12/8 = 1,5
∠mao = ≈56º20 "