пирамида КАВС, К -вершина , в основании равносторонний треугольник АВС, О-центр основания =пересечение медиан=высот=биссектрис, проводим высоту ВН на АС, уголКВО=45, КО=высота пирамиды=4*корень3, треугольник КВО прямоугольный, уголВКО=90-уголКВО=90-45=45, треугольник КВО равнобедренный, КО=ВО=4*корень3, ВН-медиана, которая в точке пересечения делится в отношении 2/1 начиная от вершины, ВО=2 части, ОН=1 часть=ВО/2=4*корень3/2=2*корень3, ВН=ВО+ОН=4*корень3+2*корень3=6*корень3, АВ=ВС=АС=2*ВН*корень3/3=2*6*корень3*корень3/3=12, площадьАВС=АС в квадрате*корень3/4=144*корень3/4=36*корень3, объем=1/3*площадьАВС*КО=1/3*36*корень3*4*корень3=144
Т.к. ac=a1c1, и bm, b1m1 - медианы, то am=cm=a1m1=c1m1. Рассмотрим треугольники abm и a1b1m1. Они равны по трем сторонам: - ab=a1b1 по условию; - bm=b1m1 по условию; - am=a1m1 как только что доказано. У равных треугольников abm и a1b1m1 равны соответственные углы amb и a1m1b1. Значит, углы bmc и b1m1c1, равные 180-<amb и 180-<a1m1b1, также равны между собой. Треугольники bmc и b1m1c1 будут равны по двум сторонам и углу между ними: - bm=b1m1 по условию; - сm=c1m1 как было показано выше; - углы bmc и b1m1c1 равны как доказано выше. У равных треугольников bmc и b1m1c1 равны соответственные стороны bc и b1c1. Таким образом, треугольники abc и a1b1c1 получаются равными по трем сторонам.
пирамида КАВС, К -вершина , в основании равносторонний треугольник АВС, О-центр основания =пересечение медиан=высот=биссектрис, проводим высоту ВН на АС, уголКВО=45, КО=высота пирамиды=4*корень3, треугольник КВО прямоугольный, уголВКО=90-уголКВО=90-45=45, треугольник КВО равнобедренный, КО=ВО=4*корень3, ВН-медиана, которая в точке пересечения делится в отношении 2/1 начиная от вершины, ВО=2 части, ОН=1 часть=ВО/2=4*корень3/2=2*корень3, ВН=ВО+ОН=4*корень3+2*корень3=6*корень3, АВ=ВС=АС=2*ВН*корень3/3=2*6*корень3*корень3/3=12, площадьАВС=АС в квадрате*корень3/4=144*корень3/4=36*корень3, объем=1/3*площадьАВС*КО=1/3*36*корень3*4*корень3=144