Вспомним, что центр вписанной в треугольник окружности - это точка пересечения его биссектрис.
Отсюда следует, что отрезки AO, BO и CO - это биссектрисы соответствующих углов треугольника.
В частности, ∠OCA = ∠OCB.
Значит, ∠ACB = 2 ∠OCA = 2 · 35° = 70°.
По теореме о сумме углов треугольника:
∠ABC = 180° - ∠BAC - ∠BCA = 180° - 50° - 70° = 60°.
И, в силу того, что BO - биссектриса:
∠ABO = ∠CBO = ∠ABC / 2 = 60° / 2 = 30°.
Задача решена! Вариант ответа - б.
ответ: б). 30° .
гипотенуза^2=первый катет^2+второй катет^2;катет=корень из разности гипотенузы и катета!
c=(15^2-12^2)под корнем
с=81 под корнем
с=9
ответ: второй катет равен 9см
Ну если периметр 34 и одна сторона 5, то другая (34 - 5 - 5)/2 = 12см.
Далее по теореме Пифагора находим диагональ. 12^2 + 5^2 = x^2, где x - Диагональ. решая уравнение, получаем, что х = 13см а - основание
а=8,
половина основания=4
в - боковая сторона
в=корень(4^2+3^2)=5
p=5+5+8=18 см
Если рассматривать диагональ квадрата как гипотенузу прямоугольного треугольника, то из теоремы Пифагора следует свойство: а^2+a^2=d^2
(примечание: sqrt-корень квадратный; а^2- "а" в квадрате; а-сторона; d-диагональ)
2a^2=sqrt8^2
2a^2=8
a^2=4
a=sqrt4
a=2см
задача5
Проведи высоты. Получится 2 равных прямоугольных треугольника с катетами, один из которых = высоте трапеции 4 см, а другой = 1/2 разности оснований трапеции: (6-3)/2 = 1,5 см => боковые стороны будут V(4^2 + 1,5^2) = V18,25 = 4,272...= 4,3 =>
Периметр будет 6+3+2*4,3 = 17,6 см
гипотенуза^2=первый катет^2+второй катет^2;катет=корень из разности гипотенузы и катета!
c=(15^2-12^2)под корнем
с=81 под корнем
с=9
ответ: второй катет равен 9см
Ну если периметр 34 и одна сторона 5, то другая (34 - 5 - 5)/2 = 12см.
Далее по теореме Пифагора находим диагональ. 12^2 + 5^2 = x^2, где x - Диагональ. решая уравнение, получаем, что х = 13см а - основание
а=8,
половина основания=4
в - боковая сторона
в=корень(4^2+3^2)=5
p=5+5+8=18 см
Если рассматривать диагональ квадрата как гипотенузу прямоугольного треугольника, то из теоремы Пифагора следует свойство: а^2+a^2=d^2
(примечание: sqrt-корень квадратный; а^2- "а" в квадрате; а-сторона; d-диагональ)
2a^2=sqrt8^2
2a^2=8
a^2=4
a=sqrt4
a=2см
задача5
Проведи высоты. Получится 2 равных прямоугольных треугольника с катетами, один из которых = высоте трапеции 4 см, а другой = 1/2 разности оснований трапеции: (6-3)/2 = 1,5 см => боковые стороны будут V(4^2 + 1,5^2) = V18,25 = 4,272...= 4,3 =>
Периметр будет 6+3+2*4,3 = 17,6 см
В
Объяснение:
потоуму что в