V=1/3*S*h (где S- площадь основания пирамиды, h- высота ) . Так как угол при вершине 60 , то осевое сечение проходящее через 2 боковых ребра и диагональ оснавания , это равносторонний треугольник , отсюда следует что диагональ основания равна боковому ребру = 4 см . Рассмотрим оснавание пирамиды - это квадрат ( т.к на правильная ) . Диагональ квадрата со стороной а = а корней из 2 . Находим сторону ,она равна 2 корня из 2 . Найдем h по теореме пифагора (боковое ребро в квадрате - половинка диагонали в квадрате ) получаем 2 корня из 3
Подставляем все в формулу : 1/3*a^2*h = 16 корней из 3/3
Так как спортивная площадка имеет прямоугольную форму, то ее площадь определяется как площадь прямоугольника (S), то есть путем умножения длины (a) на ширину (b):
S = a х b.
Если известна площадь спортивного участка и его ширина, то можно вычислить его длину:
a = S : b;
a = 11250 : 90 = 125 м.
Р=2(а+b)=2(125+90)=2*215=430(м)
ответ: длина школьной спортивной площадки составляет 125 м, периметр площадки 430 м
Объяснение:
Площадь прямоугольника равна длина умножить на ширину (S=a*b); периметр равен две длины плюс две ширины (Р=2*а+2*b) проще говоря Р=2*(a+b); B -известно надо найти А по формуле площади, т.е. длина равна площадь делить на ширину (a=S/b); a=11250/90=125 метров; ищем периметр по формуле Р=2*(а+b)=2*(125+90)=2*215=430