а) ∆АВС - рівнобедрений (АВ = ВС).
Нехай зовнішній кут 130° - це кут при вершині.
∟DBC = 130°, тоді ∟DBC = ∟A + ∟C.
∟A + ∟C = 130°. ∟A = ∟C = 130° : 2 = 65° (кути при ocнові).
∟B = 180° - ∟DBC. ∟B = 180° - 130°; ∟B = 50°.
Biдповідь: 65", 65°, 50°.
б) ∆АВС - рівнобедрений (АВ = ВС).
Нехай зовнішній кут 130° - це кут при основі ∟BCD = 130°,
тоді ∟BCD + ∟BCA = 180°.
∟BCA = 180° - 130° = 50°; ∟BCA = ∟BAC = 50°
(кути при ocновi рівнобедреного трикутника).
∟BAC + ∟BCA + ∟B = 180°.
∟B = 180° - (50° + 50°) = 180° - 100° = 80°.
Biдповідь: 50°, 50°, 80°.
ответил 08 Янв, 17 от discere
1)т.к. окружность вписана в четырёхугольник, то суммы противоположных сторон равны, т.е. ав+cd=bc+ad=6+24=30 (см)
т.к. ав=cd, то ав=cd =30: 2=15 (см).
2) из δ авв1-прям.: ав=15, ав1=(ad-bc)/2=(24-6): 2=9(cм), тогда
вв1= √(ав²-ав1²)=√15²-9²=√144=12(см).
3) sтрап.= ½· (ad+bc)·bb1=½·30·12=180 (см²)
4) радиус ,вписанной в трапецию ,окружности равен половине её высоты ,
т.е. r=½·bb1=6(см).
ответ: 6 см; 180 см².