Находим длины сторон по формуле расстояния между двумя точками.
Координаты векторов сторон
АВ (c) BC (a) AС (b)
x y x y x y
9 7 -6 2 3 9
Длины сторон АВ (с) = 81 49 √130 = 11,40175425
BC (а) = 36 4 √40 = 6,32455532
AC (b) = 9 81 √90 = 9,486832981
Периметр Р = 27,21314255.
Если периметр выражать в корнях, то надо их упростить.
√130 + √40 + √90 = √13*√10 + 2√10 + 3√10.
Далее можно в двух вариантах:
Р = √13*√10 + 5√10 или
√10 (√13 + 5).
Объяснение:
1. а) BT биссектриса, б) ВД высота, в) ВЕ медиана, г) MN средняя линия
2. ∠AKE=∠CKE ( так как КЕ - биссектриса) KA=KC (по условию задачи) Сторона КЕ - общая. Значит ΔАКЕ=ΔСКЕ по двум равным сторонам и углу между ними (первый признак)
3.∠BAC смежный с ∠1, значит он равен 180°-106°=74°
∠BCA=∠BAC (в равнобедренном треугольнике углы при основании равны)
∠BCA=74°
В равнобедренном треугольнике медиана является высотой, значит ∠BDC=90°
4. У этих треугольников ADC и ABC одна сторона (AC) общая и прилежащие к ней углы равны между собой (по условию задачи), значит треугольники равны. (второй признак).
Стороны DC и BC равны, так как ΔADC=ΔABC
д) 2 пи
Если внутренний угол равен 180 (7 - 2)/7 = 900/7, то внешний угол, дополняющий его до развернутого, равен 180 - 900/7 = 360/7, а их сумма равна 360 (у нас семиугольник), или 2 пи.