такого треугольника не существует
или 60 см^2.
Объяснение:
Треугольника с заданными сторонами не существует.
13 см > 10см + 13мм, не выполнено неравенство для сторон треугольника.
Если в условии опечатка, длины стороны треугольника 13 см, 13 см, 10 см, то площадь может быть найдена по формуле Герона:
S = √p•(p-a)•(p-b)•(p-c).
p = (10+13+13):2 = 18 (см),
S = √18•(18-13)•(18-13)•(18-10) = √(18•5^2•8) = √(9•5^2•16) = 3•5•4 = 60 (см^2)
Ещё одним может быть нахождение по формуле
S = 1/2•a•h, где а = 10 см, а длина высоты найдена по теореме Пифагора из прямоугольного треугольника, образованного боковой стороной, высотой, проведённой к основанию, и половиной основания, h = 12 см.
(S = 1/2•10•12 = 60 (см^2) ).
Можно найти точки пересечения прямой СД с прямыми АМ и АВ для получения координат точек К и Д.
Пусть треугольник расположен в прямоугольной системе координат точкой С в начале, СВ по оси Ох.
Длину ВС примем равной 2 для удобства, АС = 2/√3.
Угловой коэффициент прямой СД равен √3, прямой АМ равен (-2/√3).
Точка К как пересечение СД и АМ: √3х = (-2/√3)х + (2/√3).
3х = -2х + 2,
5х = 2 х =2/5 = 0,4.
Точка Д как пересечение СД и АВ: √3х = (-1/√3)х + (2/√3).
3х = -1х + 2,
4х = 2 х =2/4 = 0,5.
Наклонные отрезки СК и СД пропорциональны их горизонтальным проекциям (это координаты по оси Ох).
Тогда СК:СД = 4/5.
ответ: СК:КД = 4:1.