Сума зовнішніх кутів дорівнює 360°.
Нехай, х - коефіцієнт пропорційності, тоді:
1-й кут - 5х
2-й кут - 9х
3-й кут - 10х
Складемо рівняння:
5х+9х+10х=360
24х=360
х=360/24
х=15
1-й кут = 15*5=75°
2 - 1 кут = 15*9=135°
3 - й кут = 15*10=150° ==>
1-й внутрішній кут = 180°-75°=105°
2-й внутрішній кут = 180°-135°=45°
3-й внутрішній кут = 180°-150°=30°
Перевірка: сума внутрішніх кутів трикутника дорівнює 180°
105°+45°+30°+180°
Отже, ми з'ясували внутрішні кути трикутника, завдяки зовнішнім кутам.
Відповідь: 30°, 45°, 105°
Объяснение:
41) ∠4 = 145°
43) ∠1 = 40
49) ∠AKD = 10°
Объяснение:
41) Поскольку ∠3 + ∠1 = 180 и ∠3 - ∠1 = 110 составим систему уравнений (пусть ∠3 = х, ∠1 = y ):
Решим вторую часть системы.
x - (180 - x) = 110
2x = 110 +180
2x = 290
x = 145
∠3 = 145°, следовательно ∠4 тоже будет равен 145°, так как это вертикальные углы.
43) ∠3 = 180° - ∠ACD(∠1+∠2) = 180 - 110 = 70° (так как смежные)
Поскольку CD - биссектриса ∠ECB, следовательно ∠3 = ∠2 = 70°
∠1 = 180 - ∠ECB (∠2+∠3) = 180 - 140 = 40° (опять-таки так как эти углы смежные)
49) Так как KE - биссектриса ∠CKB, тогда ∠EKB = ∠CKE = 40°
Так как DK ⊥CK, значит ∠ DKC = 90°
∠DKB = ∠EKB + ∠CKE + ∠DKC = 40 + 40 + 90 = 170°
∠AKD = 180° - ∠DKB = 180- 170 = 10° (так как ∠AKD и ∠DKB смежные)