центр этой окружности лежит на пересечении 2 прямых.
1. перпендикуляр к основанию (любому), через его середину.
2. то же к любой боковой стороне.
Эта точка равноудалена от 3 вершин трапеции (просто по построению, тут и нечего доказывать), и надо показать, что и четвертая вершина трапеции равноудалена от этой точки. Но это сразу следует из того, прямая, перпендикулярная одному из оснований и проходящая через его середину, то же самое делает и со вторым - она ему перпендикулярна и проходит через его середину (здесь-то и используется равнобедренность, в неравнобедренной трапеции второе основние не разделится перпендикуляром пополам). Следовательно, точки этой прямой равноудалены от концов второго основания.
Это всё.
задача решается дополнительным построением, которое полезно запомнить.
пусть трапеция АВСD. АС = 3; ВD = 5; AD и ВС - основания.
Через точку C проводим прямую II BD до пересечения с продолжением AD. Точка пересечения - E. Площадь треугольника ACE равна площади трапеции (у них общая высота и одинаковая средняя линяя, поскольку АЕ = AD + BC.
Отрезок, соединяющий середины оснований, проходит через точку пересечения диагоналей О. Собственно, из подобия АОD и BOC следует, что медианы из точки О в обоих треугольниках составляют одинаковые углы с основаниями, то есть это - одна прямая, соединяющая середины оснований. Треугольник АСЕ тоже подобен АОD и BOC, и поэтому медиана в нем II этому отрезку. А значит, она ему равна (там получился параллелограмм, образованный медианой СМ треугольника ACE, отрезком, соединяющим середины оснований и отрезками оснований) :).
Итак, Площадь треугольника ACE равна площади трапеции, и в АСЕ известны 2 стороны 3 и 5 и медиана 2. Продолжим медиану СМ за её основание М на 2 и соединим полученную точку Р с A и Е. Получим параллелограмм ACEP (потому что диагонали делятся пополам в точке пересечения). Ясно из свойств параллелограма что площадь АСЕ = площадь CPE.
СРЕ - треугольник с заданными сторонами СЕ = BD = 5, PЕ = AC = 3, СР = 2*CM = 4.
Найти его площадь в общем случае можно по формуле Герона, но тут все просто - треугольник СРЕ прямоугольный (это просто следствие того что 9 + 16 = 25), и его площадь S = (1/2)*3*4 = 6.
Удивительно, ввел решение, и увидел, что задачу решили так же как и я : это приятно :)
Даны вершины треугольника АВС: А(0;3), В(1; -4), С(5;2).
а) уравнение стороны АВ. Вектор АВ = (1-0; -4-3) = (1; -7).
Уравнение: x/1 = (y - 3)/(-7) или 7x + y - 3 = 0 в общем виде.
б) уравнение медианы АМ.
Находим координаты точки М как середины стороны ВС.
В(1; -4), С(5;2)
М = (В (1;-4) + С (5;2))/2 = (3; -1). Точка А ( 0; 3).
Вектор АМ = (3-0; -1-3) = (3; -4).
Уравнение АМ: x/3 = (y - 3)/(-4).
Или в общем виде 4x + 3y - 9 = 0.
в) длина медианы АМ.
Вектор АМ = (3-0; -1-3) = (3; -4).
Длина (модуль) |AB| = √(3² + (-4)²) = √(9 + 16) = √25 = 5.