М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
лёха1920
лёха1920
09.05.2022 14:19 •  Геометрия

Треугольник АВС задан координатами своих вершин: А(0;3), В(1; -4), С(5;2)
а) Напишите уравнение прямой АВ,
б) Напишите уравнение медианы АМ,
в) Найдите длину медианы АМ.

👇
Ответ:
Windsorcastle
Windsorcastle
09.05.2022

Даны вершины треугольника АВС: А(0;3), В(1; -4),  С(5;2).

а) уравнение стороны АВ. Вектор АВ = (1-0; -4-3) = (1; -7).

Уравнение: x/1 = (y - 3)/(-7) или 7x + y - 3 = 0 в общем виде.

б) уравнение медианы АМ.

Находим координаты точки М как середины стороны ВС.

В(1; -4),  С(5;2)

М = (В (1;-4) + С (5;2))/2 = (3; -1). Точка А ( 0; 3).

Вектор АМ = (3-0; -1-3) = (3; -4).

Уравнение АМ: x/3 = (y - 3)/(-4).

Или  в общем виде 4x + 3y - 9 = 0.

в)  длина медианы АМ.

Вектор АМ = (3-0; -1-3) = (3; -4).

Длина (модуль) |AB| = √(3² + (-4)²) = √(9 + 16) = √25 = 5.

4,5(53 оценок)
Открыть все ответы
Ответ:
Aaaaaarrrrr55
Aaaaaarrrrr55
09.05.2022

центр этой окружности лежит на пересечении 2 прямых.

1. перпендикуляр к основанию (любому), через его середину.

2. то же к любой боковой стороне. 

Эта точка равноудалена от 3 вершин трапеции (просто по построению, тут и нечего доказывать), и надо показать, что и четвертая вершина трапеции равноудалена от этой точки. Но это сразу следует из того, прямая, перпендикулярная одному из оснований и проходящая через его середину, то же самое делает и со вторым - она ему перпендикулярна и проходит через его середину (здесь-то и используется равнобедренность, в неравнобедренной трапеции второе основние не разделится перпендикуляром пополам). Следовательно, точки этой прямой равноудалены от концов второго основания. 

Это всё.

 

4,7(28 оценок)
Ответ:
dalakovadg
dalakovadg
09.05.2022

задача решается дополнительным построением, которое полезно запомнить.

пусть трапеция АВСD. АС = 3; ВD = 5; AD и ВС - основания.

Через точку C проводим прямую II BD до пересечения с продолжением AD. Точка пересечения - E. Площадь треугольника ACE равна площади трапеции (у них общая высота и одинаковая средняя линяя, поскольку АЕ = AD + BC.

Отрезок, соединяющий середины оснований, проходит через точку пересечения диагоналей О. Собственно, из подобия АОD и BOC следует, что медианы из точки О в обоих треугольниках составляют одинаковые углы с основаниями, то есть  это - одна прямая, соединяющая середины оснований. Треугольник  АСЕ тоже подобен  АОD и BOC, и поэтому медиана в нем II этому отрезку. А значит, она ему равна (там получился параллелограмм, образованный медианой СМ треугольника ACE,  отрезком, соединяющим середины оснований и отрезками оснований) :). 

Итак, Площадь треугольника ACE равна площади трапеции, и в АСЕ известны 2 стороны 3 и 5 и медиана 2.  Продолжим медиану СМ за её основание М на 2 и соединим полученную точку Р с A и Е. Получим параллелограмм ACEP (потому что диагонали делятся пополам в точке пересечения). Ясно из свойств параллелограма что площадь АСЕ = площадь CPE.

СРЕ - треугольник с заданными сторонами СЕ = BD = 5, PЕ = AC = 3, СР = 2*CM = 4.

Найти его площадь в общем случае можно по формуле Герона, но тут все просто - треугольник СРЕ прямоугольный (это просто следствие того что 9 + 16 = 25), и его площадь S = (1/2)*3*4 = 6.

 

Удивительно, ввел решение, и увидел, что задачу решили так же как и я : это приятно :)

4,4(86 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ