Пусть BE - высота, проведенная к стороне AC, а точка D - равноудалена от концов AC, значит AD=DC. Рассмотрим тр-ки ADE и CDE. Они прямоугольные и у них один из катетов общий (DE), а гипотенузы равны AD=DC. Значит эти тр-ки равны: "если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого прямоугольного треугольника, то такие треугольники равны."
Из их равенства следует, что AE=EC, а значит тр-к ABC равнобедренный по признаку: "Если в треугольнике высота совпадает с медианой, то этот треугольник является равнобедренным"
Вот такое нахальное решение. ну уж простите : )пусть катеты a и b, гипотенуза с. я строю квадрат со сторонами (a + b), и дальше обхожу все 4 стороны по часовой стрелке, откладывая отрезок а от вершины. (пояснение.построенный со стороной (a + b) с вершинами аbcd, а - "левая нижняя" вершина. от а вверх - вдоль ав, откладывается а, потом от в вправо - вдоль вс откладывается а, потом от с вниз, вдоль cd, откладывается а, и от d вдоль da откладывается а.)все эти точки соединяются.получился квадрат со стороной с, вписанный в квадрат со стороной (a+b).ясно, что центры этих квадратов . это автоматически доказывает то, что надо в . (если не ясно, постройте там пару треугольников из диагоналей обоих квадратов и отрезков длины а и докажите их равенство. на самом деле не надо ничего доказывать - эта фигура из двух квадратов переходит сама в себя при повороте вокруг центра большого квадрата на 90 градусов. поэтому центр "вписанного" квадрата совпадает с центром большого, то есть лежит на биссктрисе прямого угла большого квадрата. ну, и биссектрисе прямого угла исходного треугольника, само собой - это одно и то же. этих треугольников там даже четыре, а не один : ), можно любой выбрать за исходный.)
Объяснение:
Пусть BE - высота, проведенная к стороне AC, а точка D - равноудалена от концов AC, значит AD=DC. Рассмотрим тр-ки ADE и CDE. Они прямоугольные и у них один из катетов общий (DE), а гипотенузы равны AD=DC. Значит эти тр-ки равны: "если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого прямоугольного треугольника, то такие треугольники равны."
Из их равенства следует, что AE=EC, а значит тр-к ABC равнобедренный по признаку: "Если в треугольнике высота совпадает с медианой, то этот треугольник является равнобедренным"