https://tex.z-dn.net/?f=S_%7BABD%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20AD%5Ccdot%20BD%5Ccdot%20%5Csin%7B%5Calpha%7D%5C%5C%5C%5CS_%7BCBD%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20CD%5Ccdot%20BD%5Ccdot%20%5Csin%7B(180%5E%7B%5Ccirc%7D-%5Calpha)%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20CD%5Ccdot%20BD%5Ccdot%20%5Csin%7B%5Calpha%7D%5C%5C%5C%5C%5Cfrac%7BS_%7BCBD%7D%7D%7BS_%7BABD%7D%7D%3D%5Cfrac%7B1%2F2%5Ccdot%20%5Ccdot%20CD%5Ccdot%20BD%5Ccdot%20%5Csin%7B%5Calpha%7D%7D%7B1%2F2%5Ccdot%20AD%5Ccdot%20BD%5Ccdot%20%5Csin%7B%5Calpha%7D%7D%3D%5Cfrac%7BCD%7D%7BAD%7D%3D%5Cfrac%7B13x%7D%7B2x%7D%5C%5C%5C%5CS_%7BCBD%7D%2BS_%7BABD%7D%3D75%3D15x%5CRightarrow%20x%3D5%5C%5C%5C%5CS_%7BABD%7D%3D2x%3D10%5C%5C%5C%5COtvet%5C!%5C!%3A%5C%3B10.
Объяснение:
Расстояние от точки до плоскости равно длине перпендикулярного к ней отрезка.
Обозначим вершины ромба АВСD.
Точка L удалена от прямых, содержащих стороны ромба, на одинаковое расстояние. ⇒ наклонные, проведенные из L перпендикулярно к сторонам ромба, равны, и по т. о з-х перпендикулярах равны их проекции.
Эти проекции равны половине диаметра вписанной в ромб окружности, который равен высоте ВН ромба. Центр окружности лежит на пересечении диагоналей ромба.
ВН=АВ•sin 45°=(a√2)/2=a/√2.
Радиус ОK=а/2√2.
По т.Пифагора из ∆ LOK катет LO=√(LK²-OK²)
LO=√(b²- a²/8) Домножив в подкоренном выражении числитель и знаменатель на 2, получим LO=√[2•(8b²-a²):16]=[√2•(8b²-a²)]:4
6 катет треугольника, который образует высота
По теореме Пифагора
H^2=10^2-6^2
H=√64=8
Ответ 8