1. Сумма острых углов в прямоугольном треугольнике = 90°. Следовательно, угол А = 90-21=69°.
2. По свойству прямоугольного треугольника, угол ОЕВ = 45°. Треугольник равнобедренный, ОЕ=ОВ=34см.
3. Угол ЕСМ = 90°-60°=30°.
Катет ЕМ, лежащий против угла в 30 градусов = половине гипотенузы СМ. ЕМ = 42см.
4. Если сумма острых углов = 90°, то:
8х+7х=90°
15х=90°
х=6.
Следовательно, один из углов = 8×6=48°, второй = 7×6=42°.
5. Сумма острых углов в прямоугольном треугольнике= 90°.
Составим уравнение.
х+(х+42)=90
2х=48
х=24
Следовательно, один из углов = 24°, другой 24+42=66°.
Находим боковую сторону трапеции.
с = √(9² + ((40-14)/2)²) =√(81+169) = √250 = 15.81139 см.
Радиус окружности, описанной около этой трапеции, равен радиусу окружности, описанной около треугольника АСД.
Находим АС - это диагональ трапеции и сторона треугольника АСД.
АС = √(9² + (14+((40-14)/2))²) = √(81 + 729) = √810 = 28.4605 см.
Синус угла А равен: sin A = 9/√810.
Тогда R = a/(2sin A) = √250/(2*(9/√810)) = √250*√810/(2*9) =
= √ 202500/18 = 450/18 = 25 см.
Ставь как лучший