Обозначим KM и MT как 2x и 5x соответственно ,тогда AC=2KT=14x (по свойству средней линии треугольника). Пусть BH=y, тогда HC=y+9; BT=(BH+HC)/2=(2y+9)/2 (KT-средняя линия), HT=BT-BH=(2y+9)/2-y=4,5(см). Так как KT - средняя линия треугольника ABC, то MT ║ AC, то есть ∆MHT~∆AHC (это можно обосновать равенством соответственных углов при параллельных прямых), коэфф.подобия k=MT/AC=5x/14x=5/14 => HT/HC=5/14 <=> 4,5/(y+9)=5/14. Решая это уравнение, получим,что y=BH=3,6 (см), HC=y+9=12,6 (см), BC=BH+HC=3,6+12,6=16,2(см). ответ: 16,2.
Пусть дана прямая l и плоскость a, они параллельны. Выберем произвольную точку A, принадлежащую a. Проведём плоскость b через точку A и прямую l - известно, что через прямую и не лежащую на ней точку можно провести ровно одну плоскость. Плоскости a и b имеют общую точку A, но не совпадают. Значит, они пересекаются по какой-то прямой m. Прямая m не пересекается с прямой l, так как лежит в плоскости, параллельной l. Кроме того, прямые m и l лежат в одной плоскости b. Таким образом, эти прямые параллельны. То есть, для любой точки из a можно построить требуемую прямую, что и требовалось доказать.
Пусть BH=y, тогда HC=y+9;
BT=(BH+HC)/2=(2y+9)/2 (KT-средняя линия), HT=BT-BH=(2y+9)/2-y=4,5(см).
Так как KT - средняя линия треугольника ABC, то MT ║ AC, то есть ∆MHT~∆AHC
(это можно обосновать равенством соответственных углов при параллельных прямых), коэфф.подобия k=MT/AC=5x/14x=5/14 =>
HT/HC=5/14 <=> 4,5/(y+9)=5/14. Решая это уравнение, получим,что y=BH=3,6 (см),
HC=y+9=12,6 (см), BC=BH+HC=3,6+12,6=16,2(см).
ответ: 16,2.