Надо вычислить расстояние от центра до хорды (все равно какой). Ясно, что треугольник, вершины которого - точки пересечения хорд - правильный. Ясно и то, что центр этого треугольника совпадает с центром окружности. Но - заодно - это центр вписанной в этот треугольник окружности. В правильном треугольнике радиус вписанной окружности равен трети высоты, то есть корень(3)/6 от стороны, а сторона ЭТОГО треугольника а/3.
Итак, есть хорда длины а, отстоящая от центра на расстояние а*корень(3)/18.
R^2 = (a/2)^2 + (а*корень(3)/18)^2 = a^2*7/27; R = a*корень(21)/9
1) не поняла, что надо найти 2)так как трапеция прямоугольная, то диагональ делит трапецию на два треу-ка, один из которых прямоугольный в этом треугольнике гипотенуза = 10, один из катетов = 8, то другой катет, являющийся меньшим основанием данной трапеции = √(100-64)=6 проведем высоту к большему основанию, которая будет равна 8 (т.к. в прямоугольнике противоположные стороны равны) и по т. Пифагора найдем отрезок большего основания трапеции, который образовался при проведении высоты = √(289-64)=15 см другой отрезок основания = 6 (т.к. в прямоугольнике противоположные стороны равны). то большее основание равно 15+6=21 см P=8+6+17+21=52 см
Надо вычислить расстояние от центра до хорды (все равно какой). Ясно, что треугольник, вершины которого - точки пересечения хорд - правильный. Ясно и то, что центр этого треугольника совпадает с центром окружности. Но - заодно - это центр вписанной в этот треугольник окружности. В правильном треугольнике радиус вписанной окружности равен трети высоты, то есть корень(3)/6 от стороны, а сторона ЭТОГО треугольника а/3.
Итак, есть хорда длины а, отстоящая от центра на расстояние а*корень(3)/18.
R^2 = (a/2)^2 + (а*корень(3)/18)^2 = a^2*7/27; R = a*корень(21)/9