Проведём осевое сечение заданной пирамиды перпендикулярно ребру основания. В сечении имеем равнобедренный треугольник ESK. Боковые стороны - это высоты h, основание ЕК равно высоте ромба в основании, высота равна высоте Н пирамиды. Сторона а основания равна: a = EK/sin α = 2h*cos β/sin α. Высота SO = Н пирамиды равна: Н = h*sin β. Площадь основания равна: So = a*EK = ( 2h*cos β/sin α)*( 2h*cos β) = 4h²*cos² β/sin α. Теперь находим искомый объём V пирамиды: V = (1/3)So*H = (1/3)*(4h²*cos² β/sin α)*(h*sin β) = (4/3)h³*cos² β*sin β/sin α.
По двум известным сторонам AD и AE площадь треугольнике ADE проще всего найти по формуле: половина произведения двух сторон на синус угла между ними... т.е. нам нужен синус угла А для угла А можно найти его косинус из треугольника АВС по т.косинусов (станет очевидно, что это тупоугольный треугольник, т.к. косинус угла --число отрицательное), а вот синус любого угла из треугольника --всегда число положительное и по основному тригонометрическому тождеству sin²x + cos²x = 1 его можно найти, зная косинус угла))
P = a + b + c
a = b + 41см: 4b = c
P = b + 41см + b + 4b = 6b + 41см = 107cм
6b = 66 см
b = 11 см
a = b + 41см = 52 см
c = 4b = 44 cм
ответ: 52, 11 и 44.