Угол треугольника равен п / 3, противоположная ему сторона √7 см, отношение длин двух других сторон а: b = 3 . Найти большую сторону треугольника.
Решение .
Т.к. а: b = 3 , то а=3b ⇒ большая сторона а.
Рассмотрим треугольник со сторонами в, 3в, √7 и углом 60°против стороны √7 .
По т. косинусов "Квадрат стороны треугольника равняется сумме квадратов 2-х других сторон минус удвоенное произведение этих сторон на косинус угла между ними" , имеем
√7²=b²+(3b)²-2*b*3b*cos60,
7=b²+9b²-2*b*3b*1/2,
7=10b²-3b² или 7b²=7 ⇒ b=1 . Тогда наибольшая сторона а=3b=3*1=3(cм) .
АВ = ВС = АС = 4; ∠А = ∠В = ∠С =60°.
Объяснение:
По теореме синусов найдём ∠АВМ.
АМ : sin ∠АВМ = 2√3 : sin 60°
(4:2) : sin ∠АВМ = 2√3 : √3/2
sin ∠АВМ = 1/2,
следовательно, ∠АВМ = 30°.
В Δ АВМ ∠АМВ = 180 - 60 - 30 = 90 °; следовательно треугольник АВМ является прямоугольным, а катет АМ, лежащий против угла 30°, равен 1/2 АВ, откуда АВ = 2 · 2 = 4.
По теореме Пифагора находим ВС = 4
ВС = √(2² + (2√3)² = √16 = 4.
В равностороннем треугольнике все углы равны 60°.
ответ: АВ = ВС = АС = 4; ∠А = ∠В = ∠С =60°.
2511,04
-15
-48,25
Объяснение:
152/5=30,4
82,6*30,4=2511,04
16-7=9
9*3=27
27-42=-15
162/8=20,25
5-33=-28
-28-20,25=-48,25