Площадь полной поверхности пирамиды (обозначим её МАВСD)
состоит из суммы площадей всех граней.
Противоположные боковые грани равны по трём сторонам.
Так как МО перпендикулярна плоскости основания, а ВD⊥АВ и CD, то ОВ – проекция наклонной МВ.
По т.о 3-х перпендикулярах МВ⊥АВ.
Диагонали параллелограмма точкой пересечения делятся пополам ⇒. ОВ=1,5.
Высота пирамиды МО⊥ОВ.
Из ∆ МОВ по т.Пифагора
МВ=√(МО²+ОВ²)=√(4+2,25)=2,5
Ѕ(АМВ)=МВ•АВ:2=2,5•4:2=5 м²
Ѕ(MCD)=S(AMB) ⇒Ѕ(MCD)+S(AMB)=10 м²
Найдём высоту второй пары боковых граней.
а) Высота DH прямоугольного ∆ BDH (в основании) равна произведению катетов, делённому на гипотенузу.
DH=DB•DC:BC=3•4:5=2,4 м
Проведем ОК⊥ВС
ВO=ОD ⇒ ОК - средняя линия ∆ВDH и равна половине DH.
ОК=1,2 м
ОК - проекция наклонной МК. ⇒ По т.ТПП отрезок МК⊥ВС и является высотой ∆ ВМС
б) Из прямоугольного ∆ МОК по т.Пифагора
МК=√(MO²+OK²)=√(4+1,44)=√5,44
√5,44=√(544/100)=(2√34):10=0,2√34
S(MBC)=BC•MK:2=0,5•5•0,2√34=0,5√34 м²
S(AMD)=S(MBC)⇒ S(AMD)+S(MBC)=2•0,5√34=√34 м²
S(ABCD)=DB•AB=3•4=12 м²
Площадь полной поверхности MABCD:
2•S(AMB)+S(ABCD)+2•S(MBC=10+12+√34=(22+√34)м²
Для начала найдем неизвестные угол и стороны ∆ АКЕ. Сумма углов треугольника 180° => угол КАЕ=180°-(54°+60°=66°
По т.синусов АЕ=АК•sin54°/sin60°. KE=AK•sin66°/sin60°
sin60°=0.8660; sin54°= 0.8090; sin66°=0.9135
AE=20•0,8090/0,8660=18,683≈18,7 см; KE=20•0,9135/0,8660=21,097≈ 21,1 см
Стороны и углы треугольника ВСD имеют те же значения, что и соответствующие углы и стороны ∆ АКЕ, но в условии не указано, какие именно элементы двух треугольников равны. Если в ∆ ВСD сторона ВС=АК, и ∠D=∠Е, то ∠В=∠А=66°,∠С=∠К=54°, ВС=20 см, ВD=AE≈18,7= см, CD=KE≈21,1 см