М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
bosi9797
bosi9797
19.04.2022 19:35 •  Геометрия

Найдите координаты вектора: а) d, если d = 3i – 4j + 2k; б) s, если s= -2i – 3k;
в) m = 2a -3b, если a(-2;4;-3), b(0;1;-2).

👇
Открыть все ответы
Ответ:
Абдешова98
Абдешова98
19.04.2022

(5)  (6) . Сумма всех плоских углов всех граней тетраэдра равна сумме углов четырёх треугольников, т.е. 720o , поэтому, если суммы углов при каждой вершине равны, то каждая из этих сумм равна 180o . Обратное: (6)  (5) – очевидно. (4)  (8) . Если R – радиус описанной около тетраэдра сферы, r – радиус вписанной сферы и центры этих сфер совпадают (рис.1), то точка касания сферы с каждой гранью лежит лежит внутри этой грани и удалена от каждой вершины треугольника на расстояние  , т.е. является центром описанной около этого треугольника окружности радиуса  . 

(8)  (4) . В любом тетраэдре перпендикуляры, опущенные из центра O описанной сферы на грани (рис.1), попадают в центры описанных окружностей, и если радиусы этих окружностей равны R1 , то точка O одинаково удалена от всех граней (на расстояние  ), а т.к. все грани – остроугольные треугольники, то O – центр вписанной сферы. 

(8)  (6) . Если радиусы описанных окружностей граней ABC и DBC тетраэдра ABCD равны, то  BAC =  BDC , поскольку эти углы острые и опираются на равные дуги BC в равных окружностях (рис.2). Аналогично для всех пар смежных граней. Таким образом, 

 BDC +  CDA +  ADB =  BAC+ CBA + ACB = 180o.
4,4(18 оценок)
Ответ:
Romakot
Romakot
19.04.2022

(5)  (6) . Сумма всех плоских углов всех граней тетраэдра равна сумме углов четырёх треугольников, т.е. 720o , поэтому, если суммы углов при каждой вершине равны, то каждая из этих сумм равна 180o . Обратное: (6)  (5) – очевидно. (4)  (8) . Если R – радиус описанной около тетраэдра сферы, r – радиус вписанной сферы и центры этих сфер совпадают (рис.1), то точка касания сферы с каждой гранью лежит лежит внутри этой грани и удалена от каждой вершины треугольника на расстояние  , т.е. является центром описанной около этого треугольника окружности радиуса  . 

(8)  (4) . В любом тетраэдре перпендикуляры, опущенные из центра O описанной сферы на грани (рис.1), попадают в центры описанных окружностей, и если радиусы этих окружностей равны R1 , то точка O одинаково удалена от всех граней (на расстояние  ), а т.к. все грани – остроугольные треугольники, то O – центр вписанной сферы. 

(8)  (6) . Если радиусы описанных окружностей граней ABC и DBC тетраэдра ABCD равны, то  BAC =  BDC , поскольку эти углы острые и опираются на равные дуги BC в равных окружностях (рис.2). Аналогично для всех пар смежных граней. Таким образом, 

 BDC +  CDA +  ADB =  BAC+ CBA + ACB = 180o.
4,4(71 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ